The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii.

A previous paper indicated that corynomycolates synthesized by the fluffy layer fraction prepared from Corynebacterium matruchotii cells appeared exclusively as alpha-trehalose 6-monocorynomycolate (TMM) (T. Shimakata, K. Tsubokura, T. Kusaka, and K. Shizukuishi, 1985, Arch. Biochem. Biophys. 238, 497-508). In the present communication, the role of trehalose in the synthesis and subsequent metabolism of corynomycolic acids was reexamined. Consequently the following facts were clarified: (i) trehalose 6-phosphate (T-6-P), but not trehalose, stimulated corynomycolate synthesis from palmitate in the presence of ATP; the immediate product was TMM, which showed a rapid turnover. Since the turnover was blocked by addition of alpha-trehalose, only TMM accumulated among corynomycolate-containing substances. These results strongly suggested that T-6-P is an essential component as the acceptor in corynomycolate-synthetic system; (ii) TMM was the precursor not only to alpha-trehalose 6,6'-dicorynomycolate (TDM) and free corynomycolic acids but also to cell wall corynomycolate; (iii) addition of alpha-trehalose blocked the transfer of the corynomycolate moiety from TMM to cell wall corynomycolate, TDM, and free corynomycolic acids to a similar extent. These results clearly indicate that trehalose plays an essential role in the metabolism of corynomycolate after Claisen condensation and subsequent reduction in C. matruchotii.[1]

References

 
WikiGenes - Universities