The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

palmitic acid     hexadecanoic acid

Synonyms: Hydrofol, palmitate, palmitoate, Hexadecoate, Palmitinate, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of palmitic acid

 

Psychiatry related information on palmitic acid

  • RESULTS: The fractional contribution from DNL to VLDL-triacylglycerol palmitate rose after alcohol consumption from 2 +/- 1% to 30 +/- 8%; nevertheless, the absolute rate of DNL (0.8 g/6 h) represented <5% of the ingested alcohol dose; 77 +/- 13% of the alcohol cleared from plasma was converted directly to acetate entering plasma [5].
  • The results suggest that the palmitate method can be used to identify long-term regional changes in the turnover of brain lipids after sensory deprivation [6].
  • Rates of mitochondrial and peroxisomal beta-oxidation of palmitate change during postnatal development and food deprivation in liver, kidney and heart of pigs [7].
  • Furthermore, the extent of diminution of clearance of palmitate, quantified in terms of the rate of clearance for palmitate divided by that for acetate (to correct for individual differences in overall mitochondrial oxidative metabolic flux), correlated with the clinical severity of the long-chain ACD deficiency [8].
  • Inhibitory effects of beta-amyrin palmitate in locomotor activity of mice were studied by combining this compound with alpha-adrenergic agonists or antagonists and a dopaminergic agonist. beta-Amyrin palmitate (2.5, 5.0 and 10.0 mg kg-1, i.p.) decreased locomotor activity of mice in a dose-dependent manner [9].
 

High impact information on palmitic acid

  • Our results indicate that there is an unexpected connection between impaired palmitate modification of neuronal proteins and the psychiatric phenotypes associated with microdeletions of chromosome 22q11 [10].
  • Synaptic strength regulated by palmitate cycling on PSD-95 [11].
  • The membrane-bound form of ubiquitin was labeled with both phosphate and palmitate, and its electrophoretic mobility was altered by treatment with phospholipase A2 and a phosphatidylcholine-specific phospholipase D. Mild trypsin digestion indicated that the acyl group was not linked to the C-terminus of the protein [12].
  • Thus, activation-induced removal of palmitate provides an explanation for activation-induced shifts of alpha s to the cytosol [13].
  • Attachment of a palmitate lipid to peptides based on the third intracellular loop of protease-activated receptor 1 (PAR1) or PAR4 (refs. 3-5) yielded potent inhibitors of thrombin-mediated aggregation of human platelets [14].
 

Chemical compound and disease context of palmitic acid

 

Biological context of palmitic acid

 

Anatomical context of palmitic acid

  • This demonstrates that Ras must bind to membranes in order to transmit a signal for transformation, but that either myristate or palmitate can perform this role [25].
  • Palmitate uptake by hepatocyte monolayers. Effect of albumin binding [26].
  • In human myotubes in vitro, we measured suppressibility (glucose suppression of FOx) and adaptability (an increase in FOx in the presence of high palmitate concentration) [27].
  • Results: Adipose tissue palmitate release was greater from forearm than whole body (5.97 +/- 0.75 vs. 3.84 +/- 0.34 mumol.kg fat-1.min-1, respectively, P less than 0.005, n = 22 subjects) [2].
  • 97% of the total laurate omega-oxidative activity recovered was found in the microsomes, but 32% of palmitate omega-oxidative activity was present in the cytosol [28].
 

Associations of palmitic acid with other chemical compounds

 

Gene context of palmitic acid

  • A NMT1 strain with deletions of all four FAAs is still viable at 30 degrees C on media containing myristate, palmitate, or oleate as the sole carbon source--indicating that S. cerevisiae contains at least one other FAA which directs fatty acids to beta-oxidation pathways [34].
  • We show that TIP1 binds the acyl group palmitate, that it can rescue the morphological, temperature sensitivity, and yeast casein kinase2 localization defects of the yeast S-acyl transferase mutant akr1Delta, and that inhibition of acylation in wild-type Arabidopsis roots reproduces the Tip1- mutant phenotype [35].
  • Here we demonstrate that Snc proteins undergo a single posttranslational modification with the addition of a palmitate moiety to Cys-95 in Snc1 [36].
  • We first cloned desat1 in the Tai strain and report here functional expression of desat1 in CS and Tai. In both strains, the Desat1 enzymes have the same Delta9 specificity and preferentially use palmitate as a substrate, leading to the synthesis of omega7 fatty acids [37].
  • The N-terminal domain (ShhNp) of Sonic hedgehog protein, generated by cholesterol-dependent autoprocessing and modification at the C terminus and by palmitate addition at the N terminus, is the active ligand in the Shh signal transduction pathway [38].
  • The inhibitory effect of palmitate on PDK1 and Akt was diminished in PKCtheta-deficient mouse embryonic fibroblasts (MEFs) by treating C2C12 myotubes with PKCtheta pseudosubstrates [39].
 

Analytical, diagnostic and therapeutic context of palmitic acid

References

  1. Membrane lipids of hepatic tissue. I. Neutral lipids from subcellular fractions of liver and hepatoma 7288CTC. Upreti, G.C., deAntueno, R.J., Wood, R. J. Natl. Cancer Inst. (1983) [Pubmed]
  2. Regulation of forearm lipolysis in different types of obesity. In vivo evidence for adipocyte heterogeneity. Jensen, M.D. J. Clin. Invest. (1991) [Pubmed]
  3. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. Bishop, R.E., Gibbons, H.S., Guina, T., Trent, M.S., Miller, S.I., Raetz, C.R. EMBO J. (2000) [Pubmed]
  4. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Broderick, T.L., Quinney, H.A., Barker, C.C., Lopaschuk, G.D. Circulation (1993) [Pubmed]
  5. De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Siler, S.Q., Neese, R.A., Hellerstein, M.K. Am. J. Clin. Nutr. (1999) [Pubmed]
  6. Regional cerebral palmitate incorporation after unilateral auditory deprivation in immature and adult Fischer-344 rats. Tone, O., Miller, J.C., Bell, J.M., Rapoport, S.I. Exp. Neurol. (1988) [Pubmed]
  7. Rates of mitochondrial and peroxisomal beta-oxidation of palmitate change during postnatal development and food deprivation in liver, kidney and heart of pigs. Yu, X.X., Drackley, J.K., Odle, J. J. Nutr. (1997) [Pubmed]
  8. Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain acyl-CoA dehydrogenase deficiency). Kelly, D.P., Mendelsohn, N.J., Sobel, B.E., Bergmann, S.R. Am. J. Cardiol. (1993) [Pubmed]
  9. An alpha-adrenoceptor-mediated mechanism of hypoactivity induced by beta-amyrin palmitate. Subarnas, A., Tadano, T., Kisara, K., Ohizumi, Y. J. Pharm. Pharmacol. (1993) [Pubmed]
  10. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Mukai, J., Liu, H., Burt, R.A., Swor, D.E., Lai, W.S., Karayiorgou, M., Gogos, J.A. Nat. Genet. (2004) [Pubmed]
  11. Synaptic strength regulated by palmitate cycling on PSD-95. El-Husseini, A.e.l.-.D., Schnell, E., Dakoji, S., Sweeney, N., Zhou, Q., Prange, O., Gauthier-Campbell, C., Aguilera-Moreno, A., Nicoll, R.A., Bredt, D.S. Cell (2002) [Pubmed]
  12. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Guarino, L.A., Smith, G., Dong, W. Cell (1995) [Pubmed]
  13. Activation and depalmitoylation of Gs alpha. Wedegaertner, P.B., Bourne, H.R. Cell (1994) [Pubmed]
  14. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Covic, L., Misra, M., Badar, J., Singh, C., Kuliopulos, A. Nat. Med. (2002) [Pubmed]
  15. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Nielsen, J.B., Caulfield, M.P., Lampen, J.O. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  16. The presence of cysteine in the cytoplasmic domain of the vesicular stomatitis virus glycoprotein is required for palmitate addition. Rose, J.K., Adams, G.A., Gallione, C.J. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  17. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Lopaschuk, G.D., Wall, S.R., Olley, P.M., Davies, N.J. Circ. Res. (1988) [Pubmed]
  18. Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Hardy, S., Langelier, Y., Prentki, M. Cancer Res. (2000) [Pubmed]
  19. Energy substrate utilization in freshly isolated Morris Hepatoma 7777 cells. Mares-Perlman, J.A., Shrago, E. Cancer Res. (1988) [Pubmed]
  20. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Yanai, A., Huang, K., Kang, R., Singaraja, R.R., Arstikaitis, P., Gan, L., Orban, P.C., Mullard, A., Cowan, C.M., Raymond, L.A., Drisdel, R.C., Green, W.N., Ravikumar, B., Rubinsztein, D.C., El-Husseini, A., Hayden, M.R. Nat. Neurosci. (2006) [Pubmed]
  21. Acylation of monocyte and glomerular mesangial cell proteins. Myristyl acylation of the interleukin 1 precursors. Bursten, S.L., Locksley, R.M., Ryan, J.L., Lovett, D.H. J. Clin. Invest. (1988) [Pubmed]
  22. Insulin therapy in burn patients does not contribute to hepatic triglyceride production. Aarsland, A., Chinkes, D.L., Sakurai, Y., Nguyen, T.T., Herndon, D.N., Wolfe, R.R. J. Clin. Invest. (1998) [Pubmed]
  23. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. Cistola, D.P., Small, D.M. J. Clin. Invest. (1991) [Pubmed]
  24. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Listenberger, L.L., Han, X., Lewis, S.E., Cases, S., Farese, R.V., Ory, D.S., Schaffer, J.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  25. Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Buss, J.E., Solski, P.A., Schaeffer, J.P., MacDonald, M.J., Der, C.J. Science (1989) [Pubmed]
  26. Palmitate uptake by hepatocyte monolayers. Effect of albumin binding. Fleischer, A.B., Shurmantine, W.O., Luxon, B.A., Forker, E.L. J. Clin. Invest. (1986) [Pubmed]
  27. Dynamic changes in fat oxidation in human primary myocytes mirror metabolic characteristics of the donor. Ukropcova, B., McNeil, M., Sereda, O., de Jonge, L., Xie, H., Bray, G.A., Smith, S.R. J. Clin. Invest. (2005) [Pubmed]
  28. Induction of omega-oxidation of monocarboxylic acids in rats by acetylsalicylic acid. Kundu, R.K., Tonsgard, J.H., Getz, G.S. J. Clin. Invest. (1991) [Pubmed]
  29. A fatty acid- dependent step is critically important for both glucose- and non-glucose-stimulated insulin secretion. Dobbins, R.L., Chester, M.W., Stevenson, B.E., Daniels, M.B., Stein, D.T., McGarry, J.D. J. Clin. Invest. (1998) [Pubmed]
  30. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. Zhou, Y.P., Grill, V.E. J. Clin. Invest. (1994) [Pubmed]
  31. Calcium-dependent action of osmolality on adenosine 3',5'-monophosphate accumulation in rat renal inner medulla: evidence for a relationship to calcium-responsive arachidonate release and prostaglandin synthesis. Craven, P.A., Briggs, R., DeRubertis, F.R. J. Clin. Invest. (1980) [Pubmed]
  32. Rosiglitazone counteracts palmitate-induced beta-cell dysfunction by suppression of MAP kinase, inducible nitric oxide synthase and caspase 3 activities. Abaraviciene, S.M., Lundquist, I., Salehi, A. Cell. Mol. Life Sci. (2008) [Pubmed]
  33. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. Nakamura, S., Takamura, T., Matsuzawa-Nagata, N., Takayama, H., Misu, H., Noda, H., Nabemoto, S., Kurita, S., Ota, T., Ando, H., Miyamoto, K., Kaneko, S. J. Biol. Chem. (2009) [Pubmed]
  34. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. Johnson, D.R., Knoll, L.J., Levin, D.E., Gordon, J.I. J. Cell Biol. (1994) [Pubmed]
  35. The TIP GROWTH DEFECTIVE1 S-acyl transferase regulates plant cell growth in Arabidopsis. Hemsley, P.A., Kemp, A.C., Grierson, C.S. Plant Cell (2005) [Pubmed]
  36. Yeast synaptobrevin homologs are modified posttranslationally by the addition of palmitate. Couve, A., Protopopov, V., Gerst, J.E. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  37. A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Dallerac, R., Labeur, C., Jallon, J.M., Knipple, D.C., Roelofs, W.L., Wicker-Thomas, C. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  38. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Maity, T., Fuse, N., Beachy, P.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  39. Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. Wang, C., Liu, M., Riojas, R.A., Xin, X., Gao, Z., Zeng, R., Wu, J., Dong, L.Q., Liu, F. J. Biol. Chem. (2009) [Pubmed]
  40. Energy expenditure, sex, and endogenous fuel availability in humans. Nielsen, S., Guo, Z., Albu, J.B., Klein, S., O'Brien, P.C., Jensen, M.D. J. Clin. Invest. (2003) [Pubmed]
  41. Contribution of glycogen to aerobic myocardial glucose utilization. Henning, S.L., Wambolt, R.B., Schönekess, B.O., Lopaschuk, G.D., Allard, M.F. Circulation (1996) [Pubmed]
  42. Regional assessment of myocardial metabolic integrity in vivo by positron-emission tomography with 11C-labeled palmitate. Ter-Pogossian, M.M., Klein, M.S., Markham, J., Roberts, R., Sobel, B.E. Circulation (1980) [Pubmed]
  43. Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous 11C-palmitate. Sobel, B.E., Weiss, E.S., Welch, M.J., Siegel, B.A., Ter-Pogossian, M.M. Circulation (1977) [Pubmed]
 
WikiGenes - Universities