The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling ( RGS) and RGS-like proteins.

GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on G subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis >2000-fold. G protein GAPs include both effector proteins ( phospholipase C-¿, p115RhoGEF) and a growing family of regulators of G protein signaling ( RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with G¿ or with G¿5 through an endogenous G-like domain, and by interaction with multiple other proteins.[1]


WikiGenes - Universities