The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protease-activated receptor-2 mediates proliferative responses in skeletal myoblasts.

Protease-activated receptor-2 ( PAR-2) is a G protein-coupled receptor that is cleaved by proteases within the N terminus, exposing a new tethered ligand that binds and activates the receptor. Activators of PAR-2 include trypsin and mast cell tryptase. Skeletal myoblasts are known to express PAR-1, a thrombin receptor. The current study was undertaken to determine whether myoblasts express PAR-2. Primary neonatal rat and mouse skeletal myoblast cultures were shown to express PAR-2 in polymerase chain reaction and immunocytochemical studies. Expression of PAR-2 was also demonstrated by immunohistochemistry in developing mouse skeletal muscle in vivo. Trypsin or a synthetic peptide corresponding to the rat PAR-2 tethered ligand caused a dose-dependent elevation in intracellular calcium in cultured rat myoblasts, with an EC(50) of 13 nM or 56 microM, respectively. Studies aimed at identifying the function of PAR-2 in myoblasts demonstrated no effect of the receptor-activating peptide on survival or fusion in serum-deprived myoblasts. The PAR-2-activating peptide did, however, stimulate proliferation of serum-deprived myoblasts. These results demonstrate that skeletal muscle cells express PAR-2, activation of which leads to stimulation of myoblast proliferation.[1]

References

  1. Protease-activated receptor-2 mediates proliferative responses in skeletal myoblasts. Chinni, C., de Niese, M.R., Jenkins, A.L., Pike, R.N., Bottomley, S.P., Mackie, E.J. J. Cell. Sci. (2000) [Pubmed]
 
WikiGenes - Universities