The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Acamprosate inhibits Ca2+ influx mediated by NMDA receptors and voltage-sensitive Ca2+ channels in cultured rat mesencephalic neurones.

Acamprosate has recently been introduced in relapse prophylaxis in weaned alcoholics. Using fura-2 microfluorimetry, the present study investigates whether acamprosate affects N-methyl-D-aspartate (NMDA) or K+-induced changes in free intracellular Ca2+ concentration ([Ca2+]i) in rat cultured mesencephalic neurones. Both application of NMDA (plus glycine) and elevation of extracellular K+ induced rapid increases in [Ca2+]i which respectively were insensitive and sensitive to omega-conotoxin (omega-CTX) MVIIC, a blocker of voltage-dependent Ca2+ channels (VDCCs). Acamprosate (100 microM and 300 microM) significantly attenuated the response induced by NMDA as well as that induced by K+ in a concentration-dependent manner. Concurrent application of omega-CTX MVIIC and acamprosate impaired the K+-induced increase in [Ca2+]i to the same extent as omega-CTX MVIIC alone. The present data suggest that acamprosate inhibits Ca2+ influx through both NMDA receptors and VDCCs.[1]

References

  1. Acamprosate inhibits Ca2+ influx mediated by NMDA receptors and voltage-sensitive Ca2+ channels in cultured rat mesencephalic neurones. Allgaier, C., Franke, H., Sobottka, H., Scheibler, P. Naunyn Schmiedebergs Arch. Pharmacol. (2000) [Pubmed]
 
WikiGenes - Universities