The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis.

Photosynthesis in plants involves two photosystems responsible for converting light energy into redox processes. The photosystems, PSI and PSII, operate largely in series, and therefore their excitation must be balanced in order to optimize photosynthetic performance. When plants are exposed to illumination favouring either PSII or PSI they can redistribute excitation towards the light-limited photosystem. Long-term changes in illumination lead to changes in photosystem stoichiometry. In contrast, state transition is a dynamic mechanism that enables plants to respond rapidly to changes in illumination. When PSII is favoured (state 2), the redox conditions in the thylakoids change and result in activation of a protein kinase. The kinase phosphorylates the main light-harvesting complex (LHCII) and the mobile antenna complex is detached from PSII. It has not been clear if attachment of LHCII to PSI in state 2 is important in state transitions. Here we show that in the absence of a specific PSI subunit, PSI-H, LHCII cannot transfer energy to PSI, and state transitions are impaired.[1]


  1. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Lunde, C., Jensen, P.E., Haldrup, A., Knoetzel, J., Scheller, H.V. Nature (2000) [Pubmed]
WikiGenes - Universities