The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Oxidation-Reduction

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Oxidation-Reduction

 

Psychiatry related information on Oxidation-Reduction

 

High impact information on Oxidation-Reduction

  • Cellular redox status is maintained by intracellular redox-regulating molecules, including thioredoxin (TRX) [11].
  • Molybdenum-cofactor-containing enzymes catalyze the transfer of an oxygen atom, ultimately derived from or incorporated into water, to or from a substrate in a two-electron redox reaction [12].
  • Moreover, redox chemistry appears to play a critical role both in the trans-activation of oxygen-responsive genes in unicellular organisms as well as in the activation of HIF-1 [13].
  • The catalytic mechanism of FGly generation was elucidated by six high-resolution structures of FGE in different redox environments [14].
  • The oxidation state of the heme iron also determines whether E75 can interact with its heterodimer partner DHR3, suggesting an additional role as a redox sensor [15].
 

Chemical compound and disease context of Oxidation-Reduction

 

Biological context of Oxidation-Reduction

  • Dueling activities of AIF in cell death versus survival: DNA binding and redox activity [21].
  • These studies thus link the H2B transcriptional machinery to cell cycle regulators, and possibly to cellular metabolic state (redox status), and set the stage for studies of the underlying mechanisms and the basis for coordinated histone gene expression and coupling to DNA replication [22].
  • The resulting structure transports calcium ions across the bilayer of a liposome to develop both a calcium ion concentration gradient and a membrane potential, expanding Mitchell's concept of a redox loop mechanism for protons to include divalent cations [23].
  • In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site [24].
  • A previously unknown redox cofactor has been identified in the active site of lysyl oxidase from the bovine aorta [25].
 

Anatomical context of Oxidation-Reduction

 

Associations of Oxidation-Reduction with chemical compounds

  • Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain [30].
  • Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form [31].
  • Here we report that PO2 dynamically controls the redox state of 6-8 out of 50 thiols in each RyR1 subunit and thereby tunes the response to NO [32].
  • The catalytic activity of Ltk in the ER may be regulated via changes in the cellular redox potential, a novel mechanism for regulating protein tyrosine kinases [33].
  • A pleiotropic-negative mutant in mttA prevents the periplasmic localization of twin arginine redox enzymes, including nitrate reductase (NapA) and trimethylamine N-oxide reductase (TorA) [34].
 

Gene context of Oxidation-Reduction

  • Txnip encodes a cytoplasmic protein that binds and inhibits thioredoxin, a major regulator of cellular redox state [35].
  • We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins [36].
  • Human HAP1 (REF1) encodes the major AP endonuclease which, in addition to its role in DNA repair, functions as a redox regulatory protein [37].
  • Thus, antigen receptor signaling induces generation of discrete species of oxidants that selectively regulate two distinct redox sensitive pathways, a proapoptotic (FasL) and a proliferative pathway (ERK) [38].
  • Together, we here present evidence showing that cellular glucocorticoid responsiveness is coordinately modulated by redox state and TRX level and propose that cross talk between neuroendocrine control of stress responses and cellular antioxidant systems may be essential for mammalian adaptation processes [39].
 

Analytical, diagnostic and therapeutic context of Oxidation-Reduction

  • Such interactions may be prevented by altering the intracellular redox potential or by site-directed mutagenesis of the relevant cysteine residue(s) [40].
  • Isosbestic fluorometry provides appropriate correction for these vascular phenomena and permits simultaneous evaluation of mitochondrial nicotinamide adenine dinucleotide redox state, microcirculatory volume, and hemoglobin oxygenation [41].
  • To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes [42].
  • Evidence for control of this activity by a redox site in cell cultures, brain tissues and in recombinant NMDA receptors are discussed by Henri Gozlan and Yehezkel Ben-Ari [43].
  • The redox potentials that were obtained from analysis of the cyclic "voltammograms," 365 mV for cytochrome f and 250 and 380 mV for cytochrome c oxidase (vs. normal hydrogen electrode), compare quite well with the values reported by using conventional titration methods [44].

References

  1. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Antony, J.M., van Marle, G., Opii, W., Butterfield, D.A., Mallet, F., Yong, V.W., Wallace, J.L., Deacon, R.M., Warren, K., Power, C. Nat. Neurosci. (2004) [Pubmed]
  2. Androgen-induced redox changes in prostate cancer cells: what are causes and effects? Liehr, J.G. J. Natl. Cancer Inst. (1997) [Pubmed]
  3. Oxidative stress in sepsis: a redox redux. Kolls, J.K. J. Clin. Invest. (2006) [Pubmed]
  4. Studies in normal and chronic granulomatous disease neutrophils indicate a correlation of tubulin tyrosinolation with the cellular redox state. Nath, J., Gallin, J.I. J. Clin. Invest. (1983) [Pubmed]
  5. Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency. Luo, X., Pitkänen, S., Kassovska-Bratinova, S., Robinson, B.H., Lehotay, D.C. J. Clin. Invest. (1997) [Pubmed]
  6. In vivo hepatic 31P magnetic resonance spectroscopy in chronic alcohol abusers. Menon, D.K., Harris, M., Sargentoni, J., Taylor-Robinson, S.D., Cox, I.J., Morgan, M.Y. Gastroenterology (1995) [Pubmed]
  7. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. Huang, X., Cuajungco, M.P., Atwood, C.S., Hartshorn, M.A., Tyndall, J.D., Hanson, G.R., Stokes, K.C., Leopold, M., Multhaup, G., Goldstein, L.E., Scarpa, R.C., Saunders, A.J., Lim, J., Moir, R.D., Glabe, C., Bowden, E.F., Masters, C.L., Fairlie, D.P., Tanzi, R.E., Bush, A.I. J. Biol. Chem. (1999) [Pubmed]
  8. Cooperative behavior in the thiol oxidation of rabbit muscle glycogen phosphorylase in cysteamine/cystamine redox buffers. Cappel, R.E., Gilbert, H.F. J. Biol. Chem. (1986) [Pubmed]
  9. Effect of acute and chronic psychostimulant drugs on redox status, AP-1 activation and pro-enkephalin mRNA in the human astrocyte-like U373 MG cells. Malaplate-Armand, C., Becuwe, P., Ferrari, L., Masson, C., Dauça, M., Visvikis, S., Lambert, H., Batt, A.M. Neuropharmacology (2005) [Pubmed]
  10. Prognostic implications of postoperative suppression of arterial ketone body ratio: time factor involved in the suppression of hepatic mitochondrial oxidation-reduction state. Yamamoto, Y., Ozawa, K., Okamoto, R., Kiuchi, T., Maki, A., Lin, H., Mori, K., Shimahara, Y., Kumada, K., Yamaoka, Y. Surgery (1990) [Pubmed]
  11. Redox regulation of cellular activation. Nakamura, H., Nakamura, K., Yodoi, J. Annu. Rev. Immunol. (1997) [Pubmed]
  12. Molybdenum-cofactor-containing enzymes: structure and mechanism. Kisker, C., Schindelin, H., Rees, D.C. Annu. Rev. Biochem. (1997) [Pubmed]
  13. Oxygen sensing and molecular adaptation to hypoxia. Bunn, H.F., Poyton, R.O. Physiol. Rev. (1996) [Pubmed]
  14. Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Dierks, T., Dickmanns, A., Preusser-Kunze, A., Schmidt, B., Mariappan, M., von Figura, K., Ficner, R., Rudolph, M.G. Cell (2005) [Pubmed]
  15. The Drosophila nuclear receptor e75 contains heme and is gas responsive. Reinking, J., Lam, M.M., Pardee, K., Sampson, H.M., Liu, S., Yang, P., Williams, S., White, W., Lajoie, G., Edwards, A., Krause, H.M. Cell (2005) [Pubmed]
  16. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. Kobayashi, T., Ito, K. EMBO J. (1999) [Pubmed]
  17. Lactate homeostasis and lactic acidosis. Kreisberg, R.A. Ann. Intern. Med. (1980) [Pubmed]
  18. Properties of a copper-containing cytochrome c1aa3 complex: a terminal oxidase of the extreme thermophile Thermus thermophilus HB8. Fee, J.A., Choc, M.G., Findling, K.L., Lorence, R., Yoshida, T. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  19. Behavioral responses of Escherichia coli to changes in redox potential. Bespalov, V.A., Zhulin, I.B., Taylor, B.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Iuchi, S., Lin, E.C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  21. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Lipton, S.A., Bossy-Wetzel, E. Cell (2002) [Pubmed]
  22. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Zheng, L., Roeder, R.G., Luo, Y. Cell (2003) [Pubmed]
  23. Active transport of Ca2+ by an artificial photosynthetic membrane. Bennett, I.M., Farfano, H.M., Bogani, F., Primak, A., Liddell, P.A., Otero, L., Sereno, L., Silber, J.J., Moore, A.L., Moore, T.A., Gust, D. Nature (2002) [Pubmed]
  24. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J., Stamler, J.S. Nature (1993) [Pubmed]
  25. A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains. Wang, S.X., Mure, M., Medzihradszky, K.F., Burlingame, A.L., Brown, D.E., Dooley, D.M., Smith, A.J., Kagan, H.M., Klinman, J.P. Science (1996) [Pubmed]
  26. Oxidized redox state of glutathione in the endoplasmic reticulum. Hwang, C., Sinskey, A.J., Lodish, H.F. Science (1992) [Pubmed]
  27. Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative. Bodor, N., Shek, E., Higuchi, T. Science (1975) [Pubmed]
  28. 3 alpha-hydroxysteroid dehydrogenase activity of the Y' bile acid binders in rat liver cytosol. Identification, kinetics, and physiologic significance. Stolz, A., Takikawa, H., Sugiyama, Y., Kuhlenkamp, J., Kaplowitz, N. J. Clin. Invest. (1987) [Pubmed]
  29. Abnormal redox status of membrane-protein thiols in sickle erythrocytes. Rank, B.H., Carlsson, J., Hebbel, R.P. J. Clin. Invest. (1985) [Pubmed]
  30. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R. Cell (2000) [Pubmed]
  31. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Hidalgo, E., Ding, H., Demple, B. Cell (1997) [Pubmed]
  32. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Eu, J.P., Sun, J., Xu, L., Stamler, J.S., Meissner, G. Cell (2000) [Pubmed]
  33. Redox regulation of a protein tyrosine kinase in the endoplasmic reticulum. Bauskin, A.R., Alkalay, I., Ben-Neriah, Y. Cell (1991) [Pubmed]
  34. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Weiner, J.H., Bilous, P.T., Shaw, G.M., Lubitz, S.P., Frost, L., Thomas, G.H., Cole, J.A., Turner, R.J. Cell (1998) [Pubmed]
  35. Positional cloning of the combined hyperlipidemia gene Hyplip1. Bodnar, J.S., Chatterjee, A., Castellani, L.W., Ross, D.A., Ohmen, J., Cavalcoli, J., Wu, C., Dains, K.M., Catanese, J., Chu, M., Sheth, S.S., Charugundla, K., Demant, P., West, D.B., de Jong, P., Lusis, A.J. Nat. Genet. (2002) [Pubmed]
  36. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Mattiasson, G., Shamloo, M., Gido, G., Mathi, K., Tomasevic, G., Yi, S., Warden, C.H., Castilho, R.F., Melcher, T., Gonzalez-Zulueta, M., Nikolich, K., Wieloch, T. Nat. Med. (2003) [Pubmed]
  37. Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Johnson, R.E., Torres-Ramos, C.A., Izumi, T., Mitra, S., Prakash, S., Prakash, L. Genes Dev. (1998) [Pubmed]
  38. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. Devadas, S., Zaritskaya, L., Rhee, S.G., Oberley, L., Williams, M.S. J. Exp. Med. (2002) [Pubmed]
  39. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. Makino, Y., Okamoto, K., Yoshikawa, N., Aoshima, M., Hirota, K., Yodoi, J., Umesono, K., Makino, I., Tanaka, H. J. Clin. Invest. (1996) [Pubmed]
  40. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Alberini, C.M., Bet, P., Milstein, C., Sitia, R. Nature (1990) [Pubmed]
  41. Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact. Kramer, R.S., Pearlstein, R.D. Science (1979) [Pubmed]
  42. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. Hansen, J., Thomas, G.D., Harris, S.A., Parsons, W.J., Victor, R.G. J. Clin. Invest. (1996) [Pubmed]
  43. NMDA receptor redox sites: are they targets for selective neuronal protection? Gozlan, H., Ben-Ari, Y. Trends Pharmacol. Sci. (1995) [Pubmed]
  44. Direct measurement of cyclic current-voltage responses of integral membrane proteins at a self-assembled lipid-bilayer-modified electrode: cytochrome f and cytochrome c oxidase. Salamon, Z., Hazzard, J.T., Tollin, G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
 
WikiGenes - Universities