The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Potentiation of Smad transactivation by Jun proteins during a combined treatment with epidermal growth factor and transforming growth factor-beta in rat hepatocytes. role of phosphatidylinositol 3-kinase- induced AP-1 activation.

Cross-talk between Smad and mitogen-activated protein kinase pathways has been described recently, and evidence for Smad cooperation with AP-1 is emerging. Here we report that epidermal growth factor (EGF) potentializes transforming growth factor beta (TGF-beta)-induced Smad3 transactivation in rat hepatocytes, an effect abrogated by TAM-67, a dominant negative mutant of AP-1. Antisense transfection experiments indicated that c-Jun and JunB were involved in the synergistic effect, and endogenous c-Jun physically associated with Smad3 during a combined EGF/TGF-beta treatment. We next investigated which signaling pathway transduced by EGF was responsible for the Jun-induced synergism. Whereas inhibition of JNK had no effect, inhibition of the phosphatidylinositol-3' kinase ( PI3-kinase) pathway by LY294002 or by expression of a dominant negative mutant of PI3-kinase reduced EGF/TGF-beta- induced Smad3 transcriptional activity. Transfection of an activated Ras with a mutation enabling the activation of the PI3-kinase pathway alone mimicked the EGF/TGF-beta potentiation of Smad3 transactivation, and TAM-67 abolished this effect, suggesting that the PI3-kinase pathway stimulates Smad3 via AP-1 stimulation. The EGF/TGF-beta- induced activation of Smad3 correlated with PI3-kinase and p38-dependent but not JNK-dependent phosphorylation of c-Jun. Since potentiation of a Smad- binding element-driven gene was also induced by EGF/TGF-beta treatment, this novel mechanism of Jun/Smad cooperation might be crucial for diversifying TGF-beta responses.[1]


WikiGenes - Universities