The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Na+/H+ antiporter from Synechocystis species PCC 6803, homologous to SOS1, contains an aspartic residue and long C-terminal tail important for the carrier activity.

A putative Na(+)/H(+) antiporter gene whose deduced amino acid sequence was highly homologous to the NhaP antiporter from Pseudomonas aeruginosa and SOS1 antiporter from Arabidopsis was isolated from Synechocystis sp. PCC 6803. The Synechocystis NhaP antiporter (SynNhaP) was expressed in Escherichia coli mutant cells, which were deficient in Na(+)/H(+) antiporters. It was found that the SynNhaP complemented the salt-sensitive phenotype of the E. coli mutant. Membrane vesicles prepared from the E. coli mutant transformed with the SynNhaP exhibited the Na(+)/H(+) and Li(+)/H(+) antiporter activities, and their activities were insensitive to amiloride. Moreover, its activity was very high between pH 5 and 9. The replacement of aspartate-138 in SynNhaP with glutamate or tyrosine inactivated the SynNhaP antiporter activity. The deletion of a part of the long C-terminal hydrophilic tail significantly inhibited the antiporter activity. A topological model suggests that aspartate-138 in SynNhaP is conserved in NhaP, SOS1, and AtNHX1 and is involved in the exchange activity. Thus, it appeared that the SynNhaP would provide a model system for the study of structural and functional properties of eucaryotic Na(+)/H(+) antiporters.[1]


WikiGenes - Universities