The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Synechocystis

  • Previous proteomic analysis of the PSII preparations from the cyanobacterium Synechocystis sp PCC 6803 detected a novel protein, Psb29 (Sll1414), homologs of which are found in all cyanobacteria and vascular plants with sequenced genomes [1].
  • The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly [2].
  • For core complexes prepared from Synechocystis PCC 6803 and Synechococcus elongatus, the fast and slow exchange rates were variously affected [3].
  • Purification of either recombinant Bacillus megaterium or Synechocystis CbiXL in Escherichia coli, which is facilitated by the presence of a naturally occurring histidine-rich region of the protein, results in the isolation of a dark brown protein solution [4].
  • Cells of Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 exhibited the capacity to take up [14C]-urea from low-concentration (<1 microM) urea solutions [5].

High impact information on Synechocystis

  • Here we report the discovery and functional characterization of GluR0 from Synechocystis PCC 6803, which is the first GluR found in a prokaryote [6].
  • Whole genome transcriptional profiling together with experimental confirmation of DNA binding indicated that Synechocystis cryptochrome DASH functions as a transcriptional repressor [7].
  • We investigated the effects in vivo of ROS to clarify the nature of the damage caused by such excess light energy to the photosynthetic machinery in the cyanobacterium Synechocystis sp. PCC 6803 [8].
  • The desA, desB and desD genes of Synechocystis sp. PCC 6803 encode acyl-lipid desaturases that introduce double bonds at the delta12, omega3 and delta6 positions of C18 fatty acids respectively [9].
  • Using a newly developed selection scheme, we have isolated BP13, a random photosynthesis-deficient mutant strain of the cyanobacterium, Synechocystis 6803 [10].

Chemical compound and disease context of Synechocystis


Biological context of Synechocystis


Anatomical context of Synechocystis


Gene context of Synechocystis

  • The genes encoding the two subunits (alpha and beta) of the cytochrome b559 (cyt b559) protein, psbE and psbF, were cloned from the unicellular, transformable cyanobacterium, Synechocystis 6803 [24].
  • HCF164 is closely related to the thioredoxin-like protein TxlA of Synechocystis sp PCC6803, most probably reflecting its evolutionary origin [25].
  • A defined mutant (M55), constructed by inactivating the ndhB gene in wild-type Synechocystis, required high CO2 conditions for growth and was unable to transport CO2 and HCO3- into the intracellular Ci pool [26].
  • We have recently identified a gene, ctpA, a mutation in which resulted in a loss of PSII activity in the cyanobacterium Synechocystis sp. PCC 6803 [27].
  • ORF slr0798, now designated ziaA, from Synechocystis PCC 6803 encodes a polypeptide with sequence features of heavy metal transporting P-type ATPases [28].

Analytical, diagnostic and therapeutic context of Synechocystis


  1. Psb29, a conserved 22-kD protein, functions in the biogenesis of Photosystem II complexes in Synechocystis and Arabidopsis. Keren, N., Ohkawa, H., Welsh, E.A., Liberton, M., Pakrasi, H.B. Plant Cell (2005) [Pubmed]
  2. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Kaberdin, V.R., Miczak, A., Jakobsen, J.S., Lin-Chao, S., McDowall, K.J., von Gabain, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. Substrate water exchange in photosystem II depends on the peripheral proteins. Hillier, W., Hendry, G., Burnap, R.L., Wydrzynski, T. J. Biol. Chem. (2001) [Pubmed]
  4. Characterization of the cobaltochelatase CbiXL: evidence for a 4Fe-4S center housed within an MXCXXC motif. Leech, H.K., Raux, E., McLean, K.J., Munro, A.W., Robinson, N.J., Borrelly, G.P., Malten, M., Jahn, D., Rigby, S.E., Heathcote, P., Warren, M.J. J. Biol. Chem. (2003) [Pubmed]
  5. An ABC-type, high-affinity urea permease identified in cyanobacteria. Valladares, A., Montesinos, M.L., Herrero, A., Flores, E. Mol. Microbiol. (2002) [Pubmed]
  6. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Chen, G.Q., Cui, C., Mayer, M.L., Gouaux, E. Nature (1999) [Pubmed]
  7. Identification of a new cryptochrome class. Structure, function, and evolution. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., Kanehisa, M., Roberts, V.A., Todo, T., Tainer, J.A., Getzoff, E.D. Mol. Cell (2003) [Pubmed]
  8. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. Nishiyama, Y., Yamamoto, H., Allakhverdiev, S.I., Inaba, M., Yokota, A., Murata, N. EMBO J. (2001) [Pubmed]
  9. Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K., Murata, N. EMBO J. (1996) [Pubmed]
  10. Molecular identification of an ABC transporter complex for manganese: analysis of a cyanobacterial mutant strain impaired in the photosynthetic oxygen evolution process. Bartsevich, V.V., Pakrasi, H.B. EMBO J. (1995) [Pubmed]
  11. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. Smart, L.B., Anderson, S.L., McIntosh, L. EMBO J. (1991) [Pubmed]
  12. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Valentin, H.E., Lincoln, K., Moshiri, F., Jensen, P.K., Qi, Q., Venkatesh, T.V., Karunanandaa, B., Baszis, S.R., Norris, S.R., Savidge, B., Gruys, K.J., Last, R.L. Plant Cell (2006) [Pubmed]
  13. The structure of a cyanobacterial sucrose-phosphatase reveals the sugar tongs that release free sucrose in the cell. Fieulaine, S., Lunn, J.E., Borel, F., Ferrer, J.L. Plant Cell (2005) [Pubmed]
  14. Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Marin, K., Suzuki, I., Yamaguchi, K., Ribbeck, K., Yamamoto, H., Kanesaki, Y., Hagemann, M., Murata, N. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  15. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Katoh, A., Lee, K.S., Fukuzawa, H., Ohyama, K., Ogawa, T. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Self-splicing group I intron in cyanobacterial initiator methionine tRNA: evidence for lateral transfer of introns in bacteria. Biniszkiewicz, D., Cesnaviciene, E., Shub, D.A. EMBO J. (1994) [Pubmed]
  17. Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex. Pakrasi, H.B., De Ciechi, P., Whitmarsh, J. EMBO J. (1991) [Pubmed]
  18. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A., Ikeuchi, M. Plant Cell (2001) [Pubmed]
  19. Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Sato, N., Hagio, M., Wada, H., Tsuzuki, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  20. A novel operon organization involving the genes for chorismate synthase (aromatic biosynthesis pathway) and ribosomal GTPase center proteins (L11, L1, L10, L12: rplKAJL) in cyanobacterium Synechocystis PCC 6803. Schmidt, J., Bubunenko, M., Subramanian, A.R. J. Biol. Chem. (1993) [Pubmed]
  21. Is the bacterial ferrous iron transporter FeoB a living fossil? Hantke, K. Trends Microbiol. (2003) [Pubmed]
  22. Delayed fluorescence from Fe-S type photosynthetic reaction centers at low redox potential. Kleinherenbrink, F.A., Hastings, G., Wittmerhaus, B.P., Blankenship, R.E. Biochemistry (1994) [Pubmed]
  23. An hsp70 homolog is encoded on the plastid genome of the red alga, Porphyra umbilicalis. Reith, M., Munholland, J. FEBS Lett. (1991) [Pubmed]
  24. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. Pakrasi, H.B., Williams, J.G., Arntzen, C.J. EMBO J. (1988) [Pubmed]
  25. HCF164 encodes a thioredoxin-like protein involved in the biogenesis of the cytochrome b(6)f complex in Arabidopsis. Lennartz, K., Plücken, H., Seidler, A., Westhoff, P., Bechtold, N., Meierhoff, K. Plant Cell (2001) [Pubmed]
  26. A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Ogawa, T. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem II reaction center complex. Anbudurai, P.R., Mor, T.S., Ohad, I., Shestakov, S.V., Pakrasi, H.B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  28. An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Thelwell, C., Robinson, N.J., Turner-Cavet, J.S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. Structural model of cytochrome b559 in photosystem II based on a mutant with genetically fused subunits. McNamara, V.P., Sutterwala, F.S., Pakrasi, H.B., Whitmarsh, J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  30. Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. Chitnis, P.R., Nelson, N. J. Biol. Chem. (1991) [Pubmed]
  31. A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. Lehel, C., Los, D., Wada, H., Györgyei, J., Horváth, I., Kovács, E., Murata, N., Vigh, L. J. Biol. Chem. (1993) [Pubmed]
  32. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. Tottey, S., Rondet, S.A., Borrelly, G.P., Robinson, P.J., Rich, P.R., Robinson, N.J. J. Biol. Chem. (2002) [Pubmed]
  33. Redox control of ntcA gene expression in Synechocystis sp. PCC 6803. Nitrogen availability and electron transport regulate the levels of the NtcA protein. Alfonso, M., Perewoska, I., Kirilovsky, D. Plant Physiol. (2001) [Pubmed]
WikiGenes - Universities