The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nrf2-dependent activation of the antioxidant responsive element by tert-butylhydroquinone is independent of oxidative stress in IMR-32 human neuroblastoma cells.

The antioxidant responsive element (ARE) is a cis-acting regulatory element located in the 5'-flanking region of several genes encoding phase II detoxification enzymes, including NAD(P)H:quinone oxidoreductase (NQO1). We report here that activation of the NQO1 ARE by tert-butylhydroquinone (tBHQ) is dependent on Nrf2 and not oxidative stress in IMR-32 human neuroblastoma cells. Overexpression of wild-type Nrf2 activated ARE in a dose-dependent manner, and ARE activation by tBHQ or diethyl maleate (DEM) was inhibited by dominant/negative Nrf2 not by dominant/negative c-Jun. According to our observation, the palindromic sequence (5' to the core) and the GC box in the ARE core sequence are essential for maximal inducibility by tBHQ or DEM. Overexpression of Nrf2 selectively activated wild-type ARE up to 24 h. In addition, a dramatic nuclear translocation of Nrf2 by tBHQ supports a role for Nrf2 in ARE activation. Although oxidative stress is hypothesized to be a major driving force for ARE activation, pretreatment of antioxidant or antioxidant enzyme did not block tBHQ-mediated ARE activation. In contrast, ARE activation by DEM was inhibited by antioxidants or catalase. These results suggest that ARE activation signals from tBHQ and DEM converge at Nrf2 transcription factor through independent mechanisms.[1]

References

 
WikiGenes - Universities