The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Oxidative Stress

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Oxidative Stress


Psychiatry related information on Oxidative Stress


High impact information on Oxidative Stress


Chemical compound and disease context of Oxidative Stress


Biological context of Oxidative Stress

  • These results provide the first direct evidence that p53 may be an important teratological suppressor gene which protects the embryo from DNA-damaging chemicals and developmental oxidative stress [20].
  • We report here that the protein p85, a regulator of the signalling protein phosphatidyl-3-OH kinase (PI(3)K), participates in the cell death process that is induced in response to oxidative stress and that this role of p85 in apoptosis does not involve PI(3)K [21].
  • Although osmostress and oxidative stress induce strong activation of the Wis1 MAPK kinase (MEK), which activates Spc1 through Thr-171/Tyr-173 phosphorylation, activation of Wis1 upon heat shock is relatively weak and transient [22].
  • The identification of specific genetic and environmental factors responsible for these diseases has bolstered evidence for a shared pathway of neuronal death--apoptosis--involving oxidative stress, perturbed calcium homeostasis, mitochondrial dysfunction and activation of cysteine proteases called caspases [23].
  • Pag, also known as macrophage 23-kD stress protein (MSP23), is a member of a novel family of proteins with antioxidant activity implicated in the cellular response to oxidative stress and in control of cell proliferation and differentiation [24].

Anatomical context of Oxidative Stress


Associations of Oxidative Stress with chemical compounds


Gene context of Oxidative Stress

  • GSTP1 is an enzyme that catalyzes the detoxification of xenobiotics and by-products of oxidative stress, and it is frequently upregulated in neoplastic cells [33].
  • The Igf1r(+/-) mice display greater resistance to oxidative stress, a known determinant of ageing [34].
  • Big MAP kinase (Bmk1), also known as Erk5, is a member of the MAP kinase family that is activated in cells in response to oxidative stress, hyperosmolarity and treatment with serum [35].
  • SKN-1 is present in ASI nuclei under normal conditions, and accumulates in intestinal nuclei in response to oxidative stress. skn-1 mutants are sensitive to oxidative stress and have shortened lifespans [36].
  • In response to oxidative stress, PMK-1 phosphorylates SKN-1, leading to its accumulation in intestine nuclei, where SKN-1 activates transcription of gcs-1, a phase II detoxification enzyme gene [37].

Analytical, diagnostic and therapeutic context of Oxidative Stress


  1. Nitrosative stress: activation of the transcription factor OxyR. Hausladen, A., Privalle, C.T., Keng, T., DeAngelo, J., Stamler, J.S. Cell (1996) [Pubmed]
  2. Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Petrache, I., Natarajan, V., Zhen, L., Medler, T.R., Richter, A.T., Cho, C., Hubbard, W.C., Berdyshev, E.V., Tuder, R.M. Nat. Med. (2005) [Pubmed]
  3. Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C., Brouckaert, P. Nat. Immunol. (2003) [Pubmed]
  4. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. Cosio, B.G., Tsaprouni, L., Ito, K., Jazrawi, E., Adcock, I.M., Barnes, P.J. J. Exp. Med. (2004) [Pubmed]
  5. Gap-junction-mediated propagation and amplification of cell injury. Lin, J.H., Weigel, H., Cotrina, M.L., Liu, S., Bueno, E., Hansen, A.J., Hansen, T.W., Goldman, S., Nedergaard, M. Nat. Neurosci. (1998) [Pubmed]
  6. Redox control of resistance to cis-diamminedichloroplatinum (II) (CDDP): protective effect of human thioredoxin against CDDP-induced cytotoxicity. Sasada, T., Iwata, S., Sato, N., Kitaoka, Y., Hirota, K., Nakamura, K., Nishiyama, A., Taniguchi, Y., Takabayashi, A., Yodoi, J. J. Clin. Invest. (1996) [Pubmed]
  7. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Mahley, R.W., Weisgraber, K.H., Huang, Y. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Pocernich, C.B., Sultana, R., Mohmmad-Abdul, H., Nath, A., Butterfield, D.A. Brain Res. Brain Res. Rev. (2005) [Pubmed]
  9. Trial of d-alpha-tocopherol in Huntington's disease. Peyser, C.E., Folstein, M., Chase, G.A., Starkstein, S., Brandt, J., Cockrell, J.R., Bylsma, F., Coyle, J.T., McHugh, P.R., Folstein, S.E. The American journal of psychiatry. (1995) [Pubmed]
  10. Effect of alcohol consumption on blood antioxidant nutrients and oxidative stress indicators. Lecomte, E., Herbeth, B., Pirollet, P., Chancerelle, Y., Arnaud, J., Musse, N., Paille, F., Siest, G., Artur, Y. Am. J. Clin. Nutr. (1994) [Pubmed]
  11. Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Kimura, T., Takeda, S., Sagiya, Y., Gotoh, M., Nakamura, Y., Arakawa, H. Nat. Genet. (2003) [Pubmed]
  12. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Zhou, B., Westaway, S.K., Levinson, B., Johnson, M.A., Gitschier, J., Hayflick, S.J. Nat. Genet. (2001) [Pubmed]
  13. Keratin 8 mutations in patients with cryptogenic liver disease. Ku, N.O., Gish, R., Wright, T.L., Omary, M.B. N. Engl. J. Med. (2001) [Pubmed]
  14. Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A. Fauman, E.B., Cogswell, J.P., Lovejoy, B., Rocque, W.J., Holmes, W., Montana, V.G., Piwnica-Worms, H., Rink, M.J., Saper, M.A. Cell (1998) [Pubmed]
  15. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Hidalgo, E., Ding, H., Demple, B. Cell (1997) [Pubmed]
  16. Vascular incorporation of alpha-tocopherol prevents endothelial dysfunction due to oxidized LDL by inhibiting protein kinase C stimulation. Keaney, J.F., Guo, Y., Cunningham, D., Shwaery, G.T., Xu, A., Vita, J.A. J. Clin. Invest. (1996) [Pubmed]
  17. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. Kaul, D.K., Liu, X.D., Chang, H.Y., Nagel, R.L., Fabry, M.E. J. Clin. Invest. (2004) [Pubmed]
  18. Early midzonal oxidative stress preceding cell death in hypoperfused rat liver. Suematsu, M., Suzuki, H., Ishii, H., Kato, S., Yanagisawa, T., Asako, H., Suzuki, M., Tsuchiya, M. Gastroenterology (1992) [Pubmed]
  19. Alcohol and mitochondria: a dysfunctional relationship. Hoek, J.B., Cahill, A., Pastorino, J.G. Gastroenterology (2002) [Pubmed]
  20. A teratologic suppressor role for p53 in benzo[a]pyrene-treated transgenic p53-deficient mice. Nicol, C.J., Harrison, M.L., Laposa, R.R., Gimelshtein, I.L., Wells, P.G. Nat. Genet. (1995) [Pubmed]
  21. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Yin, Y., Terauchi, Y., Solomon, G.G., Aizawa, S., Rangarajan, P.N., Yazaki, Y., Kadowaki, T., Barrett, J.C. Nature (1998) [Pubmed]
  22. Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Nguyen, A.N., Shiozaki, K. Genes Dev. (1999) [Pubmed]
  23. Apoptosis in neurodegenerative disorders. Mattson, M.P. Nat. Rev. Mol. Cell Biol. (2000) [Pubmed]
  24. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Wen, S.T., Van Etten, R.A. Genes Dev. (1997) [Pubmed]
  25. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Mansouri, A., Gaou, I., De Kerguenec, C., Amsellem, S., Haouzi, D., Berson, A., Moreau, A., Feldmann, G., Lettéron, P., Pessayre, D., Fromenty, B. Gastroenterology (1999) [Pubmed]
  26. Oxidative stress on mitochondria and cell membrane of cultured rat hepatocytes and perfused liver exposed to ethanol. Kurose, I., Higuchi, H., Kato, S., Miura, S., Watanabe, N., Kamegaya, Y., Tomita, K., Takaishi, M., Horie, Y., Fukuda, M., Mizukami, K., Ishii, H. Gastroenterology (1997) [Pubmed]
  27. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. Dumas, C., Ouellette, M., Tovar, J., Cunningham, M.L., Fairlamb, A.H., Tamar, S., Olivier, M., Papadopoulou, B. EMBO J. (1997) [Pubmed]
  28. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. Stamer, K., Vogel, R., Thies, E., Mandelkow, E., Mandelkow, E.M. J. Cell Biol. (2002) [Pubmed]
  29. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Devary, Y., Gottlieb, R.A., Smeal, T., Karin, M. Cell (1992) [Pubmed]
  30. Reduced chronic hemolysis during high-dose vitamin E administration in Mediterranean-type glucose-6-phosphate dehydrogenase deficiency. Corash, L., Spielberg, S., Bartsocas, C., Boxer, L., Steinherz, R., Sheetz, M., Egan, M., Schlessleman, J., Schulman, J.D. N. Engl. J. Med. (1980) [Pubmed]
  31. Redox redux: the control of oxidative stress responses. Demple, B., Amábile-Cuevas, C.F. Cell (1991) [Pubmed]
  32. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Ishii, N., Fujii, M., Hartman, P.S., Tsuda, M., Yasuda, K., Senoo-Matsuda, N., Yanase, S., Ayusawa, D., Suzuki, K. Nature (1998) [Pubmed]
  33. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Cumming, R.C., Lightfoot, J., Beard, K., Youssoufian, H., O'Brien, P.J., Buchwald, M. Nat. Med. (2001) [Pubmed]
  34. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P.C., Cervera, P., Le Bouc, Y. Nature (2003) [Pubmed]
  35. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Kato, Y., Tapping, R.I., Huang, S., Watson, M.H., Ulevitch, R.J., Lee, J.D. Nature (1998) [Pubmed]
  36. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. An, J.H., Blackwell, T.K. Genes Dev. (2003) [Pubmed]
  37. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Inoue, H., Hisamoto, N., An, J.H., Oliveira, R.P., Nishida, E., Blackwell, T.K., Matsumoto, K. Genes Dev. (2005) [Pubmed]
  38. Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Praticò, D., Tangirala, R.K., Rader, D.J., Rokach, J., FitzGerald, G.A. Nat. Med. (1998) [Pubmed]
  39. Effects of vitamin E on lipid peroxidation in healthy persons. Meagher, E.A., Barry, O.P., Lawson, J.A., Rokach, J., FitzGerald, G.A. JAMA (2001) [Pubmed]
  40. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. Rangasamy, T., Cho, C.Y., Thimmulappa, R.K., Zhen, L., Srisuma, S.S., Kensler, T.W., Yamamoto, M., Petrache, I., Tuder, R.M., Biswal, S. J. Clin. Invest. (2004) [Pubmed]
  41. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Namura, S., Iihara, K., Takami, S., Nagata, I., Kikuchi, H., Matsushita, K., Moskowitz, M.A., Bonventre, J.V., Alessandrini, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  42. Delayed-onset ataxia in mice lacking alpha -tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Yokota, T., Igarashi, K., Uchihara, T., Jishage, K., Tomita, H., Inaba, A., Li, Y., Arita, M., Suzuki, H., Mizusawa, H., Arai, H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
WikiGenes - Universities