The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors.

Recently, a family of G-protein-coupled receptors named endothelial differentiation gene (Edg) receptor family has been identified, which are specifically activated by the two serum lipids, sphingosine-1-phosphate and lysophosphatidic acid. Sphingosine-1-phosphate can also act intracellularly to release Ca2+ from intracellular stores. Since in several cell types, G-protein-coupled lysophosphatidic acid or sphingosine-1-phosphate receptors mobilize Ca2+ in the absence of a measurable phospholipase C stimulation, it was analysed here whether intracellular sphingosine-1-phosphate production was the signalling mechanism used by extracellular sphingosine-1-phosphate for mobilization of stored Ca2+. Sphingosine-1-phosphate and the low affinity sphingosine-1-phosphate receptor agonist, sphingosylphosphorylcholine, induced a rapid, transient and nearly complete pertussis toxin-sensitive Ca2+ mobilization in human embryonic kidney (HEK-293) cells. The G-protein-coupled sphingosine-1-phosphate receptors, Edg-1, Edg-3 and Edg-5, were found to be endogenously expressed in these cells. Most interestingly, sphingosine-1-phosphate and sphingosylphosphorylcholine did not induce a measurable production of inositol-1,4,5-trisphosphate or accumulation of inositol phosphates. Instead, sphingosine-1-phosphate and sphingosylphosphorylcholine induced a rapid and transient increase in production of intracellular sphingosine-1-phosphate with a maximum of about 1.4-fold at 30 s. Stimulation of sphingosine-1-phosphate formation by sphingosine-1-phosphate and sphingosylphosphorylcholine was fully blocked by pertussis toxin, indicating that extracellular sphingosine-1-phosphate via endogenously expressed G(i)-coupled receptors induces a stimulation of intracellular sphingosine-1-phosphate production. As sphingosine-1-phosphate- and sphingosylphosphorylcholine-induced increases in intracellular Ca2+ were blunted by sphingosine kinase inhibitors, this sphingosine-1-phosphate production appears to mediate Ca2+ signalling by extracellular sphingosine-1-phosphate and sphingosylphosphorylcholine in HEK-293 cells.[1]


  1. Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Meyer zu Heringdorf, D., Lass, H., Kuchar, I., Lipinski, M., Alemany, R., Rümenapp, U., Jakobs, K.H. Eur. J. Pharmacol. (2001) [Pubmed]
WikiGenes - Universities