The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones.

Allelopathic chemicals released by plants into the rhizosphere have effects on neighboring plants ranging from phytoxicity to inducing organogenesis. The allelopathic activity of naturally occurring quinones and phenols is primarily a function of reactive radicals generated during redox cycling between quinone and hydroquinone states. We isolated cDNAs encoding two distinct quinone oxidoreductases from roots of the parasitic plant Triphysaria treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). TvQR1 is a member of the zeta-crystallin quinone oxidoreductase family that catalyzes one-electron quinone reductions, generating free radical semiquinones. TvQR2 belongs to a family of detoxifying quinone oxidoreductases that catalyze bivalent redox reactions which avoid the radical intermediate. TvQR1 and TvQR2 message levels are rapidly upregulated in Triphysaria roots as a primary response to treatment with various allelopathic quinones. Inhibition of quinone oxidoreductase enzymatic activity with dicumarol prior to quinone treatment resulted in increased transcript levels. While TvQR2 homologs were upregulated by DMBQ in roots of all plants examined, TvQR1 homologs were upregulated only in roots of parasitic plants. Phylogenetic trees constructed of TvQR1 and TvQR2 protein homologs in Archea, Eubacteria and Eukaryotes indicated that both gene families are ancient, yet the families have dissimilar evolutionary histories in angiosperms. We hypothesize that TvQR2-like proteins function to detoxify allelopathic quinones in the rhizosphere, while TvQR1 has specific functions associated with haustorium development in parasitic plants.[1]


  1. Quinone oxidoreductase message levels are differentially regulated in parasitic and non-parasitic plants exposed to allelopathic quinones. Matvienko, M., Wojtowicz, A., Wrobel, R., Jamison, D., Goldwasser, Y., Yoder, J.I. Plant J. (2001) [Pubmed]
WikiGenes - Universities