In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4.
The classically conditioned vertebrate eye-blink response is a model in which to study neuronal mechanisms of learning and memory. A neural correlate of this response recorded in the abducens nerve can be conditioned entirely in vitro using an isolated brainstem-cerebellum preparation from the turtle by pairing trigeminal and auditory nerve stimulation. Here it is reported that conditioning requires that the paired stimuli occur within a narrow temporal window of <100 msec and that it is blocked by the NMDA receptor antagonist d,l-2-amino-5-phosphonovaleric acid. Moreover, there is a significant positive correlation between the levels of conditioning and greater immunoreactivity with the glutamate receptor 4 (GluR4) AMPA receptor subunit in the abducens motor nuclei, but not with NMDAR1 or GluR1. It is concluded that in vitro classical conditioning of an abducens nerve eye-blink response is generated by NMDA receptor- mediated mechanisms that may act to modify the AMPA receptor by increasing GluR4 subunits in auditory nerve synapses.[1]References
- In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4. Keifer, J. J. Neurosci. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg