The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells.

Addition of serum to mitogen-starved cells activates the cellular immediate-early gene (IEG) response. Serum response factor (SRF) contributes to such mitogen-stimulated transcriptional induction of many IEGs during the G0-G1 cell cycle transition. SRF is also believed to be essential for cell cycle progression, as impairment of SRF activity by specific antisera or antisense RNA has previously been shown to block mammalian cell proliferation. In contrast, Srf(-/-) mouse embryos grow and develop up to E6. 0. Using the embryonic stem (ES) cell system, we demonstrate here that wild-type ES cells do not undergo complete cell cycle arrest upon serum withdrawal but that they can mount an efficient IEG response. This IEG response, however, is severely impaired in Srf(-/-) ES cells, providing the first genetic proof that IEG activation is dependent upon SRF. Also, Srf(-/-) ES cells display altered cellular morphology, reduced cortical actin expression, and an impaired plating efficiency on gelatin. Yet, despite these defects, the proliferation rates of Srf(-/-) ES cells are not substantially altered, demonstrating that SRF function is not required for ES cell cycle progression.[1]

References

  1. Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Schratt, G., Weinhold, B., Lundberg, A.S., Schuck, S., Berger, J., Schwarz, H., Weinberg, R.A., Rüther, U., Nordheim, A. Mol. Cell. Biol. (2001) [Pubmed]
 
WikiGenes - Universities