The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Targeting of an A kinase-anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1.

Protein kinase A (PKA) is targeted to discrete subcellular locations close to its intended substrates through interaction with A kinase-anchoring proteins (AKAPs). Ion channels represent a diverse and important group of kinase substrates, and it has been shown that membrane targeting of PKA through association with AKAPs facilitates PKA-mediated phosphorylation and regulation of several classes of ion channel. Here, we investigate the effect of AKAP79, a membrane-associated multivalent-anchoring protein, upon the function and modulation of the strong inwardly rectifying potassium channel, Kir2. 1. Functionally, the presence of AKAP79 enhanced the response of Kir2.1 to elevated intracellular cAMP, suggesting a requirement for a pool of PKA anchored close to the channel. Antibodies directed against a hemagglutinin epitope tag on Kir2.1 coimmunoprecipitated AKAP79, indicating that the two proteins exist together in a complex within intact cells. In support of this, glutathione S-transferase fusion proteins of both the intracellular N and C domains of Kir2.1 isolated AKAP79 from cell lysates, while glutathione S-transferase alone failed to interact with AKAP79. Together, these findings suggest that AKAP79 associates directly with the Kir2.1 ion channel and may serve to anchor kinase enzymes in close proximity to key channel phosphorylation sites.[1]

References

 
WikiGenes - Universities