The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

GASH     (2S)-2-amino-4-[[(1S)-1...

Synonyms: GASH cpd, CHEBI:59399, AC1L9MDQ, C19689, Glutathione amide, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of glutathione


Psychiatry related information on glutathione


High impact information on glutathione

  • Another equally valid perspective of CFTR, however, derives from its membership in a family of transporters that transports a multitude of different substances from chemotherapeutic drugs, to amino acids, to glutathione conjugates, to small peptides in a nonconductive manner [11].
  • Treatment of bean or soybean cells with fungal elicitor or glutathione causes a rapid insolubilization of preexisting (hydroxy)proline-rich structural proteins in the cell wall [12].
  • The gamma-glutamyl cycle and amino acid transport. Studies of free amino acids, gamma-glutamyl-cysteine and glutathione in erythrocytes from patients with 5-oxoprolinuria (glutathione synthetase deficiency) [13].
  • Purified SERCA was S-glutathiolated by ONOO(-) and the increase in Ca(2+)-uptake activity of SERCA reconstituted in phospholipid vesicles required the presence of glutathione [14].
  • Formation of the sulphenyl-amide causes large changes in the PTP1B active site, which are reversible by reduction with the cellular reducing agent glutathione [15].

Chemical compound and disease context of glutathione


Biological context of glutathione

  • The response may be elicited by oxidative stress, because it is inhibited by elevation of intracellular glutathione [21].
  • Unlike wild-type Ste5, the mutant did not appear to oligomerize; however, when fused to a heterologous dimerization domain (glutathione S-transferase), the chimeric protein restored mating in an ste5Delta cell and an ste4Delta ste5Delta double mutant [22].
  • By contrast, similar treatment of mice aged 14 to 17 days, although slightly less effective in reducing glutathione levels, resulted frequently in death, hind-leg paralysis, or impaired spermatogenesis, but did not produce cataracts [16].
  • Like organic chemicals, arsenic undergoes reduction, methylation, and glutathione conjugation to yield polar metabolites that are substrates for transporters [23].
  • These compounds also readily form adducts with glutathione or free thiols and can thereby affect the metabolism, activity, and toxicology of a wide array of pharmacological agents [24].

Anatomical context of glutathione

  • We demonstrate that anthocyanins extracted from maize protoplasts expressing BZ2 are conjugated with glutathione, and that vanadate, a known inhibitor of the glutathione pump in plant vacuolar membranes, inhibits the accumulation of anthocyanins in the vacuole [25].
  • We report here that fast-inactivating K+ currents mediated by cloned K+ channel subunits derived from mammalian brain expressed in Xenopus oocytes are regulated by the reducing agent glutathione [26].
  • A glutathione pump in the vacuolar membrane of barley actively sequesters herbicide-glutathione S-conjugates; glutathionation allows recognition and entry of the conjugates into vacuoles [25].
  • Expression of Bcl-2 in the GT1-7 neural cell line prevented death as a result of glutathione depletion [27].
  • The redox state of the secretory pathway was more oxidative than that of the cytosol; the ratio of reduced glutathione to the disulfide form (GSH/GSSG) within the secretory pathway ranged from 1:1 to 3:1, whereas the overall cellular GSH/GSSG ratio ranged from 30:1 to 100:1 [28].

Associations of glutathione with other chemical compounds


Gene context of glutathione


Analytical, diagnostic and therapeutic context of glutathione


  1. Nitrosative stress: activation of the transcription factor OxyR. Hausladen, A., Privalle, C.T., Keng, T., DeAngelo, J., Stamler, J.S. Cell (1996) [Pubmed]
  2. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V., Goff, S.P. Cell (1993) [Pubmed]
  3. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Kaelin, W.G., Pallas, D.C., DeCaprio, J.A., Kaye, F.J., Livingston, D.M. Cell (1991) [Pubmed]
  4. Enzymatic assembly of slow reacting substance. Jakschik, B.A., Lee, L.H. Nature (1980) [Pubmed]
  5. Regression of aflatoxin B1-induced hepatocellular carcinomas by reduced glutathione. Novi, A.M. Science (1981) [Pubmed]
  6. High-level expression of enzymatically active mature human gamma-glutamyltransferase in transgenic V79 Chinese hamster cells. Visvikis, A., Thioudellet, C., Oster, T., Fournel-Gigleux, S., Wellman, M., Siest, G. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  7. Phenotypic effects of familial amyotrophic lateral sclerosis mutant Sod alleles in transgenic Drosophila. Mockett, R.J., Radyuk, S.N., Benes, J.J., Orr, W.C., Sohal, R.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. Amino acids, glutathione, and glutathione transferase activity in the brains of patients with Alzheimer's disease. Perry, T.L., Yong, V.W., Bergeron, C., Hansen, S., Jones, K. Ann. Neurol. (1987) [Pubmed]
  9. Changes in hepatic glutathione metabolism in diabetes. McLennan, S.V., Heffernan, S., Wright, L., Rae, C., Fisher, E., Yue, D.K., Turtle, J.R. Diabetes (1991) [Pubmed]
  10. Saitohin, which is nested in the tau locus and confers allele-specific susceptibility to several neurodegenerative diseases, interacts with peroxiredoxin 6. Gao, L., Tse, S.W., Conrad, C., Andreadis, A. J. Biol. Chem. (2005) [Pubmed]
  11. CFTR is a conductance regulator as well as a chloride channel. Schwiebert, E.M., Benos, D.J., Egan, M.E., Stutts, M.J., Guggino, W.B. Physiol. Rev. (1999) [Pubmed]
  12. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Bradley, D.J., Kjellbom, P., Lamb, C.J. Cell (1992) [Pubmed]
  13. The gamma-glutamyl cycle and amino acid transport. Studies of free amino acids, gamma-glutamyl-cysteine and glutathione in erythrocytes from patients with 5-oxoprolinuria (glutathione synthetase deficiency). Hagenfeldt, L., Larsson, A., Andersson, R. N. Engl. J. Med. (1978) [Pubmed]
  14. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Adachi, T., Weisbrod, R.M., Pimentel, D.R., Ying, J., Sharov, V.S., Schöneich, C., Cohen, R.A. Nat. Med. (2004) [Pubmed]
  15. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., Jhoti, H. Nature (2003) [Pubmed]
  16. Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice. Calvin, H.I., Medvedovsky, C., Worgul, B.V. Science (1986) [Pubmed]
  17. Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase. Scrutton, N.S., Deonarain, M.P., Berry, A., Perham, R.N. Science (1992) [Pubmed]
  18. Functional pleiotropy of the neurohormone melatonin: antioxidant protection and neuroendocrine regulation. Reiter, R.J. Frontiers in neuroendocrinology. (1995) [Pubmed]
  19. Effect of glutathione on DNA repair in cisplatin-resistant human ovarian cancer cell lines. Lai, G.M., Ozols, R.F., Young, R.C., Hamilton, T.C. J. Natl. Cancer Inst. (1989) [Pubmed]
  20. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. Zhu, X.H., Shen, Y.L., Jing, Y.K., Cai, X., Jia, P.M., Huang, Y., Tang, W., Shi, G.Y., Sun, Y.P., Dai, J., Wang, Z.Y., Chen, S.J., Zhang, T.D., Waxman, S., Chen, Z., Chen, G.Q. J. Natl. Cancer Inst. (1999) [Pubmed]
  21. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Devary, Y., Gottlieb, R.A., Smeal, T., Karin, M. Cell (1992) [Pubmed]
  22. Ste5 RING-H2 domain: role in Ste4-promoted oligomerization for yeast pheromone signaling. Inouye, C., Dhillon, N., Thorner, J. Science (1997) [Pubmed]
  23. Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Kumagai, Y., Sumi, D. Annu. Rev. Pharmacol. Toxicol. (2007) [Pubmed]
  24. Ethnopharmacology of Mexican asteraceae (Compositae). Heinrich, M., Robles, M., West, J.E., Ortiz de Montellano, B.R., Rodriguez, E. Annu. Rev. Pharmacol. Toxicol. (1998) [Pubmed]
  25. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V. Nature (1995) [Pubmed]
  26. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Ruppersberg, J.P., Stocker, M., Pongs, O., Heinemann, S.H., Frank, R., Koenen, M. Nature (1991) [Pubmed]
  27. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T., Bredesen, D.E. Science (1993) [Pubmed]
  28. Oxidized redox state of glutathione in the endoplasmic reticulum. Hwang, C., Sinskey, A.J., Lodish, H.F. Science (1992) [Pubmed]
  29. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Parman, T., Wiley, M.J., Wells, P.G. Nat. Med. (1999) [Pubmed]
  30. Cysteine and glutathione secretion in response to protein disulfide bond formation in the ER. Carelli, S., Ceriotti, A., Cabibbo, A., Fassina, G., Ruvo, M., Sitia, R. Science (1997) [Pubmed]
  31. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. van Asbeck, B.S., Hoidal, J., Vercellotti, G.M., Schwartz, B.A., Moldow, C.F., Jacob, H.S. Science (1985) [Pubmed]
  32. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione. Bump, E.A., Yu, N.Y., Brown, J.M. Science (1982) [Pubmed]
  33. Sesquiterpene antitumor agents: inhibitors of cellular metabolism. Lee, K.H., Hall, I.H., Mar, E.C., Starnes, C.O., ElGebaly, S.A., Waddell, T.G., HADGRAFT, R.I., Ruffner, C.G., Weidner, I. Science (1977) [Pubmed]
  34. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Wijnholds, J., Evers, R., van Leusden, M.R., Mol, C.A., Zaman, G.J., Mayer, U., Beijnen, J.H., van der Valk, M., Krimpenfort, P., Borst, P. Nat. Med. (1997) [Pubmed]
  35. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D.F., Bell, J.C., Hettmann, T., Leiden, J.M., Ron, D. Mol. Cell (2003) [Pubmed]
  36. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Frand, A.R., Kaiser, C.A. Mol. Cell (1998) [Pubmed]
  37. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. Saoulli, K., Lee, S.Y., Cannons, J.L., Yeh, W.C., Santana, A., Goldstein, M.D., Bangia, N., DeBenedette, M.A., Mak, T.W., Choi, Y., Watts, T.H. J. Exp. Med. (1998) [Pubmed]
  38. Role of antioxidant enzymes in the induction of increased experimental metastasis by hydroxyurea. Eskenazi, A.E., Pinkas, J., Whitin, J.C., Arguello, F., Cohen, H.J., Frantz, C.N. J. Natl. Cancer Inst. (1993) [Pubmed]
  39. Rat liver protein linking chemical and immunological detoxification systems. Blocki, F.A., Schlievert, P.M., Wackett, L.P. Nature (1992) [Pubmed]
  40. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. Tachibana, K., Sato, T., D'Avirro, N., Morimoto, C. J. Exp. Med. (1995) [Pubmed]
  41. Reactive oxygen species during ischemia-reflow injury in isolated perfused rat liver. Jaeschke, H., Smith, C.V., Mitchell, J.R. J. Clin. Invest. (1988) [Pubmed]
  42. Relationship between thiol depletion and chemosensitization in a transplantable murine bladder tumor. Tomashefsky, P., Astor, M., White, R.D. J. Natl. Cancer Inst. (1985) [Pubmed]
  43. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process. Ookhtens, M., Hobdy, K., Corvasce, M.C., Aw, T.Y., Kaplowitz, N. J. Clin. Invest. (1985) [Pubmed]
WikiGenes - Universities