The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

CaM kinase II-dependent suppression of nicotinic acetylcholine receptor delta-subunit promoter activity.

Nerve-induced muscle activity suppresses nicotinic acetylcholine receptor (nAChR) gene expression by increasing intracellular calcium levels. This suppression is mediated by nAChR promoter sequences harboring at least 1 E-box (CANNTG) that bind myogenic helix-loop-helix transcription factors. How muscle depolarization or increased calcium mediates changes in nAChR promoter activity is not well understood. In chick muscle, protein kinase C ( PKC) activation is necessary for activity-dependent nAChR gene suppression. Similar effects of PKC activation have not been found in mammalian skeletal muscle. Therefore, we used rat primary muscle cultures to screen for other calcium-regulated enzymatic activities that may mediate the effects of muscle activity and calcium on nAChR promoter activity. We report here that calcium/calmodulin-dependent protein kinase II (CaM kinase II) can specifically suppress nAChR promoter activity in mammalian muscle. This regulation was mediated by a single E-box sequence residing in the previously characterized nAChR delta-subunit genes 47-base pair activity-dependent enhancer. In vitro protein/DNA interaction studies suggest that CaM kinase II inhibits binding of the myogenic factor, myogenin, to the delta-promoter 47-base pair activity-dependent enhancer. CaM kinase activity is increased in active muscle and inhibition of this enzymatic activity results in increased nAChR delta-promoter activity. Therefore, CaM kinase II may represent a previously unappreciated activity that participates in coupling muscle depolarization to nAChR gene expression.[1]


WikiGenes - Universities