The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae.
One of the most recent functions assigned to the TOR signaling pathway in yeast is the coordination of the transcription of genes involved in nutrient utilization. Here we show that transcription of ENA1, a gene encoding a lithium and sodium ion transporter essential for salt tolerance in yeast, is controlled by the TOR signaling pathway. First, ENA1 expression is strongly induced under TOR-inactivating conditions. Second, the absence of the TOR-controlled GATA transcription factors GLN3 and GAT1 results in reduced basal and salt- induced expression of ENA1. Third, a gln3 gat1 mutant displays a pronounced sensitivity to high concentrations of lithium and sodium. Fourth, TOR1, similar to ENA1, is required for growth under saline stress conditions. In summary, our results suggest that TOR plays a role in the general response to saline stress by regulating the transcription of ENA1 via GLN3 and GAT1.[1]References
- The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. Crespo, J.L., Daicho, K., Ushimaru, T., Hall, M.N. J. Biol. Chem. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg