The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification.

ATP-dependent priming of the secretory granules precedes Ca(2+)-regulated neuroendocrine secretion, but the exact nature of this reaction is not fully established in all secretory cell types. We have further investigated this reaction in the insulin-secreting pancreatic B-cell and demonstrate that granular acidification driven by a V-type H(+)-ATPase in the granular membrane is a decisive step in priming. This requires simultaneous Cl(-) uptake through granular ClC-3 Cl(-) channels. Accordingly, granule acidification and priming are inhibited by agents that prevent transgranular Cl(-) fluxes, such as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and an antibody against the ClC-3 channels, but accelerated by increases in the intracellular ATP:ADP ratio or addition of hypoglycemic sulfonylureas. We suggest that this might represent an important mechanism for metabolic regulation of Ca(2+)-dependent exocytosis that is also likely to be operational in other secretory cell types.[1]

References

  1. Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. Barg, S., Huang, P., Eliasson, L., Nelson, D.J., Obermüller, S., Rorsman, P., Thévenod, F., Renström, E. J. Cell. Sci. (2001) [Pubmed]
 
WikiGenes - Universities