The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Secretory Vesicles

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Secretory Vesicles

 

Psychiatry related information on Secretory Vesicles

 

High impact information on Secretory Vesicles

 

Chemical compound and disease context of Secretory Vesicles

 

Biological context of Secretory Vesicles

 

Anatomical context of Secretory Vesicles

 

Associations of Secretory Vesicles with chemical compounds

 

Gene context of Secretory Vesicles

  • Both BRCA1 and the granins localize to secretory vesicles, are secreted by a regulated pathway, are post-translationally glycosylated and are responsive to hormones [29].
  • P-glycoproteins (P-gps) encoded by the mouse mdr2 and mdr3 genes were expressed in secretory vesicles (SVs) from the yeast mutant sec6-4, and their capacity to function as a lipid translocase/flippase was tested [30].
  • The tail domain of Myo2 that binds Kar9 also interacts with secretory vesicles and vacuolar elements, making it a pivotal component of yeast cell polarization [31].
  • Intracellular vesicles containing CTLA-4 overlapped with endocytic compartment(s) and with perforin-containing secretory granules [32].
  • Endogenous WNK1 and Syt2 coimmunoprecipitate and colocalize on a subset of secretory granules in INS-1 cells [33].
 

Analytical, diagnostic and therapeutic context of Secretory Vesicles

References

  1. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Prentki, M., Biden, T.J., Janjic, D., Irvine, R.F., Berridge, M.J., Wollheim, C.B. Nature (1984) [Pubmed]
  2. Stimulation of insulin secretion reveals heterogeneity of pancreatic B cells in vivo. Stefan, Y., Meda, P., Neufeld, M., Orci, L. J. Clin. Invest. (1987) [Pubmed]
  3. Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Reynolds, D.S., Stevens, R.L., Lane, W.S., Carr, M.H., Austen, K.F., Serafin, W.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Patella, V., Marinò, I., Arbustini, E., Lamparter-Schummert, B., Verga, L., Adt, M., Marone, G. Circulation (1998) [Pubmed]
  5. Cell surface expression of the HIV-1 envelope glycoproteins is directed from intracellular CTLA-4-containing regulated secretory granules. Miranda, L.R., Schaefer, B.C., Kupfer, A., Hu, Z., Franzusoff, A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  6. Chromogranin A inhibits dopamine release from rat striatal slices. Gibson, C.J., Munoz, D.G. Journal of neural transmission (Vienna, Austria : 1996) (1998) [Pubmed]
  7. Gastric endocrine cells: gene expression, processing, and targeting of active products. Dockray, G.J., Varro, A., Dimaline, R. Physiol. Rev. (1996) [Pubmed]
  8. A neuropeptide courier for delta-opioid receptors? Julius, D., Basbaum, A.I. Cell (2005) [Pubmed]
  9. S-nitrosylation of NSF controls membrane trafficking. Söllner, T.H., Sequeira, S. Cell (2003) [Pubmed]
  10. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Kim, T., Tao-Cheng, J.H., Eiden, L.E., Loh, Y.P. Cell (2001) [Pubmed]
  11. Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. Gondré-Lewis, M.C., Petrache, H.I., Wassif, C.A., Harries, D., Parsegian, A., Porter, F.D., Loh, Y.P. J. Cell. Sci. (2006) [Pubmed]
  12. 5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma. Hutton, J.C., Peshavaria, M., Tooke, N.E. Biochem. J. (1983) [Pubmed]
  13. Expression and regulation of a vesicular monoamine transporter in rat stomach: a putative histamine transporter. Dimaline, R., Struthers, J. J. Physiol. (Lond.) (1996) [Pubmed]
  14. Decreased prolactin level in secretory granules and their increased exocytosis in estrogen-induced pituitary hyperplasia in rats treated with a dopamine agonist. Maeda, T., Sawada, K., Itoh, Y., Moriwaki, K., Mori, H. Lab. Invest. (1991) [Pubmed]
  15. Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells. Höhne-Zell, B., Ecker, A., Weller, U., Gratzl, M. FEBS Lett. (1994) [Pubmed]
  16. A functional cyclic AMP response element plays a crucial role in neuroendocrine cell type-specific expression of the secretory granule protein chromogranin A. Wu, H., Mahata, S.K., Mahata, M., Webster, N.J., Parmer, R.J., O'Connor, D.T. J. Clin. Invest. (1995) [Pubmed]
  17. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. Solimena, M., Dirkx, R., Hermel, J.M., Pleasic-Williams, S., Shapiro, J.A., Caron, L., Rabin, D.U. EMBO J. (1996) [Pubmed]
  18. Mechanism of uptake and retrograde axonal transport of noradrenaline in sympathetic neurons in culture: reserpine-resistant large dense-core vesicles as transport vehicles. Schwab, M.E., Thoenen, H. J. Cell Biol. (1983) [Pubmed]
  19. The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. Perin, M.S., Fried, V.A., Slaughter, C.A., Südhof, T.C. EMBO J. (1988) [Pubmed]
  20. Accumulation of adrenocorticotropin secretory granules in the midbody of telophase AtT20 cells: evidence that secretory granules move anterogradely along microtubules. Tooze, J., Burke, B. J. Cell Biol. (1987) [Pubmed]
  21. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Goud, B., Salminen, A., Walworth, N.C., Novick, P.J. Cell (1988) [Pubmed]
  22. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Gumbiner, B., Kelly, R.B. Cell (1982) [Pubmed]
  23. Cell-free protein sorting to the regulated and constitutive secretory pathways. Tooze, S.A., Huttner, W.B. Cell (1990) [Pubmed]
  24. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., Kusche-Gullberg, M., Eriksson, I., Ledin, J., Hellman, L., Kjellén, L. Nature (1999) [Pubmed]
  25. SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Bajjalieh, S.M., Peterson, K., Shinghal, R., Scheller, R.H. Science (1992) [Pubmed]
  26. A clathrin-coated, Golgi-related compartment of the insulin secreting cell accumulates proinsulin in the presence of monensin. Orci, L., Halban, P., Amherdt, M., Ravazzola, M., Vassalli, J.D., Perrelet, A. Cell (1984) [Pubmed]
  27. Immunoreactive substance P and serotonin present in the same dense-core vesicles. Pelletier, G., Steinbusch, H.W., Verhofstad, A.A. Nature (1981) [Pubmed]
  28. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Fernandez, J.M., Neher, E., Gomperts, B.D. Nature (1984) [Pubmed]
  29. BRCA1 is secreted and exhibits properties of a granin. Jensen, R.A., Thompson, M.E., Jetton, T.L., Szabo, C.I., van der Meer, R., Helou, B., Tronick, S.R., Page, D.L., King, M.C., Holt, J.T. Nat. Genet. (1996) [Pubmed]
  30. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Ruetz, S., Gros, P. Cell (1994) [Pubmed]
  31. Myosin V orientates the mitotic spindle in yeast. Yin, H., Pruyne, D., Huffaker, T.C., Bretscher, A. Nature (2000) [Pubmed]
  32. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Linsley, P.S., Bradshaw, J., Greene, J., Peach, R., Bennett, K.L., Mittler, R.S. Immunity (1996) [Pubmed]
  33. WNK1 phosphorylates synaptotagmin 2 and modulates its membrane binding. Lee, B.H., Min, X., Heise, C.J., Xu, B.E., Chen, S., Shu, H., Luby-Phelps, K., Goldsmith, E.J., Cobb, M.H. Mol. Cell (2004) [Pubmed]
  34. Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. Eskeland, N.L., Zhou, A., Dinh, T.Q., Wu, H., Parmer, R.J., Mains, R.E., O'Connor, D.T. J. Clin. Invest. (1996) [Pubmed]
  35. Parathyroid hormone-like protein is a secretory product of atrial myocytes. Deftos, L.J., Burton, D.W., Brandt, D.W. J. Clin. Invest. (1993) [Pubmed]
  36. The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. De Bie, I., Marcinkiewicz, M., Malide, D., Lazure, C., Nakayama, K., Bendayan, M., Seidah, N.G. J. Cell Biol. (1996) [Pubmed]
  37. Sulfated compounds in the zymogen granules of the guinea pig pancreas. Reggio, H.A., Palade, G.E. J. Cell Biol. (1978) [Pubmed]
  38. Evidence for intracellular endothelin-converting enzyme-2 expression in cultured human vascular endothelial cells. Russell, F.D., Davenport, A.P. Circ. Res. (1999) [Pubmed]
 
WikiGenes - Universities