The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Exocytosis


Psychiatry related information on Exocytosis


High impact information on Exocytosis

  • In addition, ion channels may be involved in the regulation of the traffic of macromolecules by endocytosis, transcytosis, the biosynthetic-secretory pathway, and exocytosis, e.g., tissue factor pathway inhibitor, von Willebrand factor, and tissue plasminogen activator [7].
  • Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown [8].
  • The SNARE complex, consisting of synaptobrevin, syntaxin, and SNAP-25, is essential for calcium-triggered exocytosis in neurosecretory cells [9].
  • Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor [10].
  • Introduction into hippocampal neurons of a dominant-negative endophilin construct, which constitutively binds to Ca2+ channels, significantly reduces endocytosis-mediated uptake of FM 4-64 dye without abolishing exocytosis [11].

Chemical compound and disease context of Exocytosis


Biological context of Exocytosis


Anatomical context of Exocytosis


Associations of Exocytosis with chemical compounds

  • These results provide support for the hypothesis that synaptotagmin, a Ca(2+)- and phospholipid-binding protein, is important for regulated exocytosis in neurons [27].
  • The mutants are defective in exocytosis, since they accumulate acetylcholine, and are resistant to cholinesterase inhibitors, but they nevertheless remain sensitive to cholinergic receptor agonists [28].
  • Synaptotagmin I, a synaptic vesicle protein involved in the Ca2+ regulation of exocytosis, contains two C2 domains, the first of which acts as a Ca2+ sensor [29].
  • Nitric oxide is a diffusible molecule with profound effects on regulated exocytosis in several biological systems-however, the molecular targets remain elusive [30].
  • In permeabilized cells, under conditions of fixed [Ca2+]c, added glutamate directly stimulates insulin exocytosis, independently of mitochondrial function [31].

Gene context of Exocytosis

  • Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis [32].
  • VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx [33].
  • It was half as potent as NAF/NAP-1 in inducing exocytosis but showed the same activity in the other responses [34].
  • We speculated that this IL-4-dependent, receptor-mediated response to the cys-LTs and UDP might induce cytokine generation by hMCs without concomitant exocytosis [35].
  • Vav1 was found to control activation of extracellular signal-regulated kinases and exocytosis of cytotoxic granules [36].

Analytical, diagnostic and therapeutic context of Exocytosis


  1. Activation of a G protein complex by aggregation of beta-1,4-galactosyltransferase on the surface of sperm. Gong, X., Dubois, D.H., Miller, D.J., Shur, B.D. Science (1995) [Pubmed]
  2. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Lu, W., Man, H., Ju, W., Trimble, W.S., MacDonald, J.F., Wang, Y.T. Neuron (2001) [Pubmed]
  3. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. Pinsky, D.J., Naka, Y., Liao, H., Oz, M.C., Wagner, D.D., Mayadas, T.N., Johnson, R.C., Hynes, R.O., Heath, M., Lawson, C.A., Stern, D.M. J. Clin. Invest. (1996) [Pubmed]
  4. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. Beuers, U., Nathanson, M.H., Isales, C.M., Boyer, J.L. J. Clin. Invest. (1993) [Pubmed]
  5. Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. Matsushita, K., Morrell, C.N., Mason, R.J., Yamakuchi, M., Khanday, F.A., Irani, K., Lowenstein, C.J. J. Cell Biol. (2005) [Pubmed]
  6. Enhancement of MTT, a tetrazolium salt, exocytosis by amyloid beta-protein and chloroquine in cultured rat astrocytes. Isobe, I., Michikawa, M., Yanagisawa, K. Neurosci. Lett. (1999) [Pubmed]
  7. Ion channels and their functional role in vascular endothelium. Nilius, B., Droogmans, G. Physiol. Rev. (2001) [Pubmed]
  8. Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Guan, J.S., Xu, Z.Z., Gao, H., He, S.Q., Ma, G.Q., Sun, T., Wang, L.H., Zhang, Z.N., Lena, I., Kitchen, I., Elde, R., Zimmer, A., He, C., Pei, G., Bao, L., Zhang, X. Cell (2005) [Pubmed]
  9. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Sørensen, J.B., Nagy, G., Varoqueaux, F., Nehring, R.B., Brose, N., Wilson, M.C., Neher, E. Cell (2003) [Pubmed]
  10. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Matsushita, K., Morrell, C.N., Cambien, B., Yang, S.X., Yamakuchi, M., Bao, C., Hara, M.R., Quick, R.A., Cao, W., O'Rourke, B., Lowenstein, J.M., Pevsner, J., Wagner, D.D., Lowenstein, C.J. Cell (2003) [Pubmed]
  11. Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis. Chen, Y., Deng, L., Maeno-Hikichi, Y., Lai, M., Chang, S., Chen, G., Zhang, J.F. Cell (2003) [Pubmed]
  12. Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Takiyyuddin, M.A., Cervenka, J.H., Sullivan, P.A., Pandian, M.R., Parmer, R.J., Barbosa, J.A., O'Connor, D.T. Circulation (1990) [Pubmed]
  13. Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats. Takamori, M., Hamada, T., Komai, K., Takahashi, M., Yoshida, A. Ann. Neurol. (1994) [Pubmed]
  14. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. Härndahl, L., Jing, X.J., Ivarsson, R., Degerman, E., Ahrén, B., Manganiello, V.C., Renström, E., Holst, L.S. J. Biol. Chem. (2002) [Pubmed]
  15. Neutrophil CR3 expression and specific granule exocytosis are controlled by different signal transduction pathways. Brown, G.E., Reed, E.B., Lanser, M.E. J. Immunol. (1991) [Pubmed]
  16. Estrogen enhances depolarization-induced glutamate release through activation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase in cultured hippocampal neurons. Yokomaku, D., Numakawa, T., Numakawa, Y., Suzuki, S., Matsumoto, T., Adachi, N., Nishio, C., Taguchi, T., Hatanaka, H. Mol. Endocrinol. (2003) [Pubmed]
  17. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Bergles, D.E., Roberts, J.D., Somogyi, P., Jahr, C.E. Nature (2000) [Pubmed]
  18. alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Südhof, T.C. Annu. Rev. Neurosci. (2001) [Pubmed]
  19. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. Zamai, L., Ahmad, M., Bennett, I.M., Azzoni, L., Alnemri, E.S., Perussia, B. J. Exp. Med. (1998) [Pubmed]
  20. Structure and neutrophil-activating properties of a novel inflammatory peptide (ENA-78) with homology to interleukin 8. Walz, A., Burgener, R., Car, B., Baggiolini, M., Kunkel, S.L., Strieter, R.M. J. Exp. Med. (1991) [Pubmed]
  21. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Tse, F.W., Tse, A., Hille, B., Horstmann, H., Almers, W. Neuron (1997) [Pubmed]
  22. Synaptic transmission persists in synaptotagmin mutants of Drosophila. DiAntonio, A., Parfitt, K.D., Schwarz, T.L. Cell (1993) [Pubmed]
  23. IgE-mediated degranulation of mast cells does not require opening of ion channels. Lindau, M., Fernandez, J.M. Nature (1986) [Pubmed]
  24. Exposure of an antigen of chromaffin granules on cell surface during exocytosis. Lingg, G., Fischer-Colbrie, R., Schmidt, W., Winkler, H. Nature (1983) [Pubmed]
  25. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Cockcroft, S., Gomperts, B.D. Nature (1985) [Pubmed]
  26. Hormone-induced cyclic guanosine monophosphate secretion from guinea pig pancreatic lobules. Kapoor, C.L., Krishna, G. Science (1977) [Pubmed]
  27. A role for synaptotagmin (p65) in regulated exocytosis. Elferink, L.A., Peterson, M.R., Scheller, R.H. Cell (1993) [Pubmed]
  28. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Nonet, M.L., Grundahl, K., Meyer, B.J., Rand, J.B. Cell (1993) [Pubmed]
  29. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Südhof, T.C., Sprang, S.R. Cell (1995) [Pubmed]
  30. S-nitrosylation of NSF controls membrane trafficking. Söllner, T.H., Sequeira, S. Cell (2003) [Pubmed]
  31. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Maechler, P., Wollheim, C.B. Nature (1999) [Pubmed]
  32. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis. Brennwald, P., Kearns, B., Champion, K., Keränen, S., Bankaitis, V., Novick, P. Cell (1994) [Pubmed]
  33. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Singh, B.B., Lockwich, T.P., Bandyopadhyay, B.C., Liu, X., Bollimuntha, S., Brazer, S.C., Combs, C., Das, S., Leenders, A.G., Sheng, Z.H., Knepper, M.A., Ambudkar, S.V., Ambudkar, I.S. Mol. Cell (2004) [Pubmed]
  34. Effects of the neutrophil-activating peptide NAP-2, platelet basic protein, connective tissue-activating peptide III and platelet factor 4 on human neutrophils. Walz, A., Dewald, B., von Tscharner, V., Baggiolini, M. J. Exp. Med. (1989) [Pubmed]
  35. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. Mellor, E.A., Austen, K.F., Boyce, J.A. J. Exp. Med. (2002) [Pubmed]
  36. Functional dichotomy in natural killer cell signaling: Vav1-dependent and -independent mechanisms. Colucci, F., Rosmaraki, E., Bregenholt, S., Samson, S.I., Di Bartolo, V., Turner, M., Vanes, L., Tybulewicz, V., Di Santo, J.P. J. Exp. Med. (2001) [Pubmed]
  37. Reversible phagocytosis in rabbit polymorphonuclear leukocytes. Berlin, R.D., Fera, J.P., Pfeiffer, J.R. J. Clin. Invest. (1979) [Pubmed]
  38. Electron microprobe analysis of human labial gland secretory granules in cystic fibrosis. Izutsu, K., Johnson, D., Schubert, M., Wang, E., Ramsey, B., Tamarin, A., Truelove, E., Ensign, W., Young, M. J. Clin. Invest. (1985) [Pubmed]
  39. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. TerBush, D.R., Novick, P. J. Cell Biol. (1995) [Pubmed]
  40. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. Braun, V., Fraisier, V., Raposo, G., Hurbain, I., Sibarita, J.B., Chavrier, P., Galli, T., Niedergang, F. EMBO J. (2004) [Pubmed]
  41. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I. Nicholson-Tomishima, K., Ryan, T.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities