The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation.

Using the inactivation of mitochondrial and cytosolic aconitases as markers of compartment-specific superoxide (O2(-)) production, we show that oxygen-glucose deprivation (OGD) or excitotoxin exposure produce a time-dependent inactivation of mitochondrial, but not cytosolic, aconitase in cortical cultures. To determine if mitochondrial O2(-) production was an important determinant in neuronal death resulting from OGD, metalloporphyrins with varying superoxide dismutase (SOD) activity were tested for their ability to protect against mitochondrial aconitase inactivation and cell death. OGD-induced mitochondrial aconitase inactivation and cell death was inhibited by manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP), manganese tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) and NMDA receptor antagonists. By contrast, NMDA- or kainate (KA)-induced mitochondrial aconitase inactivation and cell death was inhibited by MnTBAP, but not MnTE-2-PyP. Moreover, both MnTBAP and MnTE-2-PyP penetrated mitochondrial fractions of cortical cells. These data suggest that mitochondrial aconitase inactivation closely correlates with subsequent neuronal death following excitotoxicity produced by OGD or NMDA/KA exposure. Assessment of biological rather biochemical antioxidant activities better predicted neuroprotection by metalloporphyrins. Moreover, antioxidants that protect oxidant-sensitive mitochondrial targets such as aconitase may be useful as therapies for disease states involving excitotoxicity.[1]

References

  1. Dependence of excitotoxic neurodegeneration on mitochondrial aconitase inactivation. Li, Q.Y., Pedersen, C., Day, B.J., Patel, M. J. Neurochem. (2001) [Pubmed]
 
WikiGenes - Universities