Role of Na(+)/H(+) exchanger during O(2) deprivation in mouse CA1 neurons.
To determine the role of membrane transporters in intracellular pH (pH(i)) regulation under conditions of low microenvironmental O(2), we monitored pH(i) in isolated single CA1 neurons using the fluorescent indicator carboxyseminaphthorhodafluor-1 and confocal microscopy. After total O(2) deprivation or anoxia (PO(2) approximately equal to 0 Torr), a large increase in pH(i) was seen in CA1 neurons in HEPES buffer, but a drop in pH(i), albeit small, was observed in the presence of HCO(3)(-). Ionic substitution and pharmacological experiments showed that the large anoxia-induced pH(i) increase in HEPES buffer was totally Na(+) dependent and was blocked by HOE-694, strongly suggesting the activation of the Na(+)/H(+) exchanger (NHE). Also, this pH(i) increase in HEPES buffer was significantly smaller in Na(+)/H(+) exchanger isoform 1 (NHE1) null mutant CA1 neurons than in wild-type neurons, demonstrating that NHE1 is responsible for part of the pH(i) increase following anoxia. Both chelerythrine and H-89 partly blocked, and H-7 totally eliminated, this anoxia-induced pH(i) increase in the absence of HCO. We conclude that 1) O(2) deprivation activates Na(+)/H(+) exchange by enhancing protein kinase activity and 2) membrane proteins, such as NHE, actively participate in regulating pH(i) during low-O(2) states in neurons.[1]References
- Role of Na(+)/H(+) exchanger during O(2) deprivation in mouse CA1 neurons. Yao, H., Gu, X.Q., Douglas, R.M., Haddad, G.G. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg