The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A second uniquely human mutation affecting sialic acid biology.

Siglecs are immunoglobulin superfamily member lectins that selectively recognize different types and linkages of sialic acids, which are major components of cell surface and secreted glycoconjugates. We report here a human Siglec-like molecule ( Siglec-L1) that lacks a conserved arginine residue known to be essential for optimal sialic acid recognition by previously known Siglecs. Loss of the arginine from an ancestral molecule was caused by a single nucleotide substitution that occurred after the common ancestor of humans with the great apes but before the origin of modern humans. The chimpanzee Siglec-L1 ortholog remains fully functional and preferentially recognizes N-glycolylneuraminic acid, which is a common sialic acid in great apes and other mammals. Reintroducing the ancestral arginine into the human molecule regenerates the same properties. Thus, the single base pair mutation that replaced the arginine on human Siglec-L1 is likely to be evolutionarily related to the previously reported loss of N-glycolylneuraminic acid expression in the human lineage. Siglec-L1 and its chimpanzee Siglec ortholog also have a different expression pattern from previously reported Siglecs because they are found on the lumenal edge of epithelial cell surfaces. Notably, the human genome contains several Siglec-like pseudogenes that have independent mutations that would have replaced the arginine residue required for optimal sialic acid recognition. Thus, additional changes in the biology of sialic acids may have taken place during human evolution.[1]


  1. A second uniquely human mutation affecting sialic acid biology. Angata, T., Varki, N.M., Varki, A. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities