The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Voltage-induced membrane movement.

Thermodynamics predicts that transmembrane voltage modulates membrane tension and that this will cause movement. The magnitude and polarity of movement is governed by cell stiffness and surface potentials. Here we confirm these predictions using the atomic force microscope to dynamically follow the movement of voltage-clamped HEK293 cells in different ionic-strength solutions. In normal saline, depolarization caused an outward movement, and at low ionic strength an inward movement. The amplitude was proportional to voltage (about 1 nm per 100 mV) and increased with indentation depth. A simple physical model of the membrane and tip provided an estimate of the external and internal surface charge densities (-5 x 10(-3) C x m(-2) and -18 x 10(-3) C x m(-2), respectively). Salicylate (a negative amphiphile) inhibited electromotility by increasing the external charge density by -15 x 10(-3) C x m(-2). As salicylate blocks electromotility in cochlear outer hair cells at the same concentration, the role of prestin as a motor protein may need to be reassessed.[1]


  1. Voltage-induced membrane movement. Zhang, P.C., Keleshian, A.M., Sachs, F. Nature (2001) [Pubmed]
WikiGenes - Universities