The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mastoparan alters subcellular distribution of profilin and remodels F-actin cytoskeleton in cells of maize root apices.

Indirect immunofluorescence localization of profilin in cells of maize root apices revealed that this abundant protein was present both in the cytoplasm and within nuclei. Nucleo-cytoplasmic partitioning of profilin exhibits tissue-specific and developmental features. Mastoparan-mediated activation of heterotrimeric G-proteins, presumably through triggering a phosphoinositide-signaling pathway based on phosphatidylinositol-4,5-bisphosphate (PIP(2)), induced relocalization of profilin from nuclei into the cytoplasm of root apex cells. In contrast, PIP(2) accumulated within nuclei of mastoparan-treated root cells. Intriguingly, cytoplasmic accumulation of profilin was associated with remodeling of F-actin arrays in root apex cells. Specifically, dense F-actin networks were dismantled and distinct actin patches became associated with the periphery of small vacuoles. On the other hand, disruption of F-actin with the G-actin sequestering agent latrunculin B does not affect the subcellular distribution of profilin or PIP(2). These data suggest that nuclear profilin can mediate a stimulus-response action on the actin cytoskeleton which is somehow linked to a phosphoinositide-signaling cascade.[1]

References

  1. Mastoparan alters subcellular distribution of profilin and remodels F-actin cytoskeleton in cells of maize root apices. Baluska, F., von Witsch, M., Peters, M., Hlavacka, A., Volkmann, D. Plant Cell Physiol. (2001) [Pubmed]
 
WikiGenes - Universities