The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cytoskeleton


Psychiatry related information on Cytoskeleton

  • This is a controversial theory, however, primarily because there is a poor correlation between the concentrations and distribution of amyloid depositions in the brain and several parameters of AD pathology, including degree of dementia, loss of synapses, loss of neurons and abnormalities of the cytoskeleton [6].
  • Isolation and chemical characterization of Alzheimer's disease paired helical filament cytoskeletons: differentiation from amyloid plaque core protein [7].
  • The mechanism underlying cannibalism involved a complex framework, including lysosomal protease cathepsin B activity, caveolae formation, and ezrin cytoskeleton integrity and function [8].
  • In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders [9].

High impact information on Cytoskeleton

  • All these receptors induce rearrangements in the actin cytoskeleton that lead to the internalization of the particle [10].
  • Following the identification of WASP, the gene mutated in patients with this syndrome, and the more generally expressed WASP homologue N-WASP, studies have demonstrated that WASP-family molecules associate with numerous signaling molecules known to alter the actin cytoskeleton [11].
  • We propose here a key role for PAK action in coordinating the dynamics of the actin and microtubule cytoskeletons during directional motility of cells, as well as in other functions requiring cytoskeletal polarization [12].
  • In the absence of Cdc42 or Cdc24, the actin cytoskeleton does not become organized and budding does not take place [13].
  • In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning [14].

Chemical compound and disease context of Cytoskeleton


Biological context of Cytoskeleton


Anatomical context of Cytoskeleton


Associations of Cytoskeleton with chemical compounds

  • Immunoprecipitation of Triton X-100-soluble and -insoluble cytoskeletal fractions with alpha- and beta-spectrin antisera show that, at steady state, alpha and beta spectrin are present in stoichiometric amounts, and exclusively, in the cytoskeleton [29].
  • Are cells using stretch-activated ion channels to explore the extracellular environment surrounding them, or do they use for that purpose the submembrane protein network that interconnects integrin receptors with the actin cytoskeleton [30]?
  • Ca(2+) signaling by calpains leads to controlled proteolysis during processes ranging from cytoskeleton remodeling in mammals to sex determination in nematodes [31].
  • Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras [32].
  • They also raise the possibility that PIP2 synthesis could mediate the effects of Rho on the actin cytoskeleton [33].

Gene context of Cytoskeleton


Analytical, diagnostic and therapeutic context of Cytoskeleton


  1. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Lane, E.B., Rugg, E.L., Navsaria, H., Leigh, I.M., Heagerty, A.H., Ishida-Yamamoto, A., Eady, R.A. Nature (1992) [Pubmed]
  2. Putting E. coli on a pedestal: a unique system to study signal transduction and the actin cytoskeleton. Goosney, D.L., de Grado, M., Finlay, B.B. Trends Cell Biol. (1999) [Pubmed]
  3. The emerging family of dystrophin-related proteins. Blake, D.J., Tinsley, J.M., Davies, K.E. Trends Cell Biol. (1994) [Pubmed]
  4. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. Valitutti, S., Dessing, M., Aktories, K., Gallati, H., Lanzavecchia, A. J. Exp. Med. (1995) [Pubmed]
  5. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. Wang, M.W., Wei, S., Faccio, R., Takeshita, S., Tebas, P., Powderly, W.G., Teitelbaum, S.L., Ross, F.P. J. Clin. Invest. (2004) [Pubmed]
  6. Alzheimer's disease: a re-examination of the amyloid hypothesis. Neve, R.L., Robakis, N.K. Trends Neurosci. (1998) [Pubmed]
  7. Isolation and chemical characterization of Alzheimer's disease paired helical filament cytoskeletons: differentiation from amyloid plaque core protein. Roher, A.E., Palmer, K.C., Chau, V., Ball, M.J. J. Cell Biol. (1988) [Pubmed]
  8. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Lugini, L., Matarrese, P., Tinari, A., Lozupone, F., Federici, C., Iessi, E., Gentile, M., Luciani, F., Parmiani, G., Rivoltini, L., Malorni, W., Fais, S. Cancer Res. (2006) [Pubmed]
  9. Rho GTPases, dendritic structure, and mental retardation. Newey, S.E., Velamoor, V., Govek, E.E., Van Aelst, L. J. Neurobiol. (2005) [Pubmed]
  10. Mechanisms of phagocytosis in macrophages. Aderem, A., Underhill, D.M. Annu. Rev. Immunol. (1999) [Pubmed]
  11. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Snapper, S.B., Rosen, F.S. Annu. Rev. Immunol. (1999) [Pubmed]
  12. Biology of the p21-activated kinases. Bokoch, G.M. Annu. Rev. Biochem. (2003) [Pubmed]
  13. Role of small G proteins in yeast cell polarization and wall biosynthesis. Cabib, E., Drgonová, J., Drgon, T. Annu. Rev. Biochem. (1998) [Pubmed]
  14. Molecular physiology of cardiac repolarization. Nerbonne, J.M., Kass, R.S. Physiol. Rev. (2005) [Pubmed]
  15. Bombesin-induced gastrin release from canine G cells is stimulated by Ca2+ but not by protein kinase C, and is enhanced by disruption of rho/cytoskeletal pathways. Seensalu, R., Avedian, D., Barbuti, R., Song, M., Slice, L., Walsh, J.H. J. Clin. Invest. (1997) [Pubmed]
  16. Integrin phosphorylation is modulated during the differentiation of F-9 teratocarcinoma stem cells. Dahl, S.C., Grabel, L.B. J. Cell Biol. (1989) [Pubmed]
  17. Association of the epidermal growth factor receptor kinase with the detergent-insoluble cytoskeleton of A431 cells. Landreth, G.E., Williams, L.K., Rieser, G.D. J. Cell Biol. (1985) [Pubmed]
  18. Lymphoma Thy-1 glycoprotein is linked to the cytoskeleton via a 4.1-like protein. Bourguignon, L.Y., Suchard, S.J., Kalomiris, E.L. J. Cell Biol. (1986) [Pubmed]
  19. Specific disruption of vimentin filament organization in monkey kidney CV-1 cells by diphtheria toxin, exotoxin A, and cycloheximide. Sharpe, A.H., Chen, L.B., Murphy, J.R., Fields, B.N. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  20. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Broschat, K.O., Stidwill, R.P., Burgess, D.R. Cell (1983) [Pubmed]
  21. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Tu, Y., Wu, S., Shi, X., Chen, K., Wu, C. Cell (2003) [Pubmed]
  22. Missing links: Weber-Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function. Rugg, E.L., Morley, S.M., Smith, F.J., Boxer, M., Tidman, M.J., Navsaria, H., Leigh, I.M., Lane, E.B. Nat. Genet. (1993) [Pubmed]
  23. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Robertson, S.P., Twigg, S.R., Sutherland-Smith, A.J., Biancalana, V., Gorlin, R.J., Horn, D., Kenwrick, S.J., Kim, C.A., Morava, E., Newbury-Ecob, R., Orstavik, K.H., Quarrell, O.W., Schwartz, C.E., Shears, D.J., Suri, M., Kendrick-Jones, J., Wilkie, A.O. Nat. Genet. (2003) [Pubmed]
  24. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. McGrath, J.A., McMillan, J.R., Shemanko, C.S., Runswick, S.K., Leigh, I.M., Lane, E.B., Garrod, D.R., Eady, R.A. Nat. Genet. (1997) [Pubmed]
  25. Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Franke, W.W., Hergt, M., Grund, C. Cell (1987) [Pubmed]
  26. Regulation of actin polymerization by villin, a 95,000 dalton cytoskeletal component of intestinal brush borders. Craig, S.W., Powell, L.D. Cell (1980) [Pubmed]
  27. Growth signal transduction: rapid activation of covalently bound ornithine decarboxylase during phosphatidylinositol breakdown. Mustelin, T., Pösö, H., Lapinjoki, S.P., Gynther, J., Andersson, L.C. Cell (1987) [Pubmed]
  28. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Bretscher, A., Weber, K. Cell (1980) [Pubmed]
  29. Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and beta spectrin. Blikstad, I., Nelson, W.J., Moon, R.T., Lazarides, E. Cell (1983) [Pubmed]
  30. Exploring the neighborhood: adhesion-coupled cell mechanosensors. Geiger, B., Bershadsky, A. Cell (2002) [Pubmed]
  31. A Ca(2+) switch aligns the active site of calpain. Moldoveanu, T., Hosfield, C.M., Lim, D., Elce, J.S., Jia, Z., Davies, P.L. Cell (2002) [Pubmed]
  32. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A., Downward, J. Cell (1997) [Pubmed]
  33. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Chong, L.D., Traynor-Kaplan, A., Bokoch, G.M., Schwartz, M.A. Cell (1994) [Pubmed]
  34. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Liu, H.P., Bretscher, A. Cell (1989) [Pubmed]
  35. Neurofibromatosis 2 tumour suppressor schwannomin interacts with betaII-spectrin. Scoles, D.R., Huynh, D.P., Morcos, P.A., Coulsell, E.R., Robinson, N.G., Tamanoi, F., Pulst, S.M. Nat. Genet. (1998) [Pubmed]
  36. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Ho, H.Y., Rohatgi, R., Lebensohn, A.M., Le Ma, n.u.l.l., Li, J., Gygi, S.P., Kirschner, M.W. Cell (2004) [Pubmed]
  37. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Dustin, M.L., Olszowy, M.W., Holdorf, A.D., Li, J., Bromley, S., Desai, N., Widder, P., Rosenberger, F., van der Merwe, P.A., Allen, P.M., Shaw, A.S. Cell (1998) [Pubmed]
  38. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Newsome, T.P., Schmidt, S., Dietzl, G., Keleman, K., Asling, B., Debant, A., Dickson, B.J. Cell (2000) [Pubmed]
  39. SH3 domains direct cellular localization of signaling molecules. Bar-Sagi, D., Rotin, D., Batzer, A., Mandiyan, V., Schlessinger, J. Cell (1993) [Pubmed]
  40. Structural insights into actin-binding, branching and bundling proteins. Winder, S.J. Curr. Opin. Cell Biol. (2003) [Pubmed]
  41. Rho family proteins: coordinating cell responses. Ridley, A.J. Trends Cell Biol. (2001) [Pubmed]
  42. Selective activation of cervical microvascular endothelial cells by human papillomavirus 16-e7 oncoprotein. D'Anna, R., Le Buanec, H., Alessandri, G., Caruso, A., Burny, A., Gallo, R., Zagury, J.F., Zagury, D., D'Alessio, P. J. Natl. Cancer Inst. (2001) [Pubmed]
  43. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. Zhou, M.J., Brown, E.J. J. Cell Biol. (1994) [Pubmed]
WikiGenes - Universities