The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1OAGKW     (2R)-2-[[hydroxy- [(2R,3R,5S,6R)-2,3,4,5,6...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PtdIns

 

Psychiatry related information on PtdIns

 

High impact information on PtdIns

 

Chemical compound and disease context of PtdIns

 

Biological context of PtdIns

 

Anatomical context of PtdIns

 

Associations of PtdIns with other chemical compounds

 

Gene context of PtdIns

 

Analytical, diagnostic and therapeutic context of PtdIns

References

  1. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. van Corven, E.J., Groenink, A., Jalink, K., Eichholtz, T., Moolenaar, W.H. Cell (1989) [Pubmed]
  2. Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Begley, M.J., Taylor, G.S., Kim, S.A., Veine, D.M., Dixon, J.E., Stuckey, J.A. Mol. Cell (2003) [Pubmed]
  3. Escherichia coli hemolysin is a potent inductor of phosphoinositide hydrolysis and related metabolic responses in human neutrophils. Grimminger, F., Sibelius, U., Bhakdi, S., Suttorp, N., Seeger, W. J. Clin. Invest. (1991) [Pubmed]
  4. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Zou, Y., Akazawa, H., Qin, Y., Sano, M., Takano, H., Minamino, T., Makita, N., Iwanaga, K., Zhu, W., Kudoh, S., Toko, H., Tamura, K., Kihara, M., Nagai, T., Fukamizu, A., Umemura, S., Iiri, T., Fujita, T., Komuro, I. Nat. Cell Biol. (2004) [Pubmed]
  5. Human immunodeficiency virus-1 glycoproteins gp120 and gp160 specifically inhibit the CD3/T cell-antigen receptor phosphoinositide transduction pathway. Cefai, D., Debre, P., Kaczorek, M., Idziorek, T., Autran, B., Bismuth, G. J. Clin. Invest. (1990) [Pubmed]
  6. Decreased catalytic activity and expression of protein kinase C isozymes in teenage suicide victims: a postmortem brain study. Pandey, G.N., Dwivedi, Y., Rizavi, H.S., Ren, X., Conley, R.R. Arch. Gen. Psychiatry (2004) [Pubmed]
  7. Phosphoinositide signaling in human brain. Pacheco, M.A., Jope, R.S. Prog. Neurobiol. (1996) [Pubmed]
  8. Identification of PIK3C3 promoter variant associated with bipolar disorder and schizophrenia. Stopkova, P., Saito, T., Papolos, D.F., Vevera, J., Paclt, I., Zukov, I., Bersson, Y.B., Margolis, B.A., Strous, R.D., Lachman, H.M. Biol. Psychiatry (2004) [Pubmed]
  9. Influences of cholecystokinin octapeptide on phosphoinositide turnover in neonatal-rat brain cells. Zhang, L.J., Lu, X.Y., Han, J.S. Biochem. J. (1992) [Pubmed]
  10. Electroconvulsive shock and reserpine increase alpha 1-adrenoceptor binding sites but not norepinephrine-stimulated phosphoinositide hydrolysis in rat brain. Blendy, J.A., Stockmeier, C.A., Kellar, K.J. Eur. J. Pharmacol. (1988) [Pubmed]
  11. Patch clamp studies of lymphocyte activation. Gardner, P. Annu. Rev. Immunol. (1990) [Pubmed]
  12. PTEN and myotubularin: novel phosphoinositide phosphatases. Maehama, T., Taylor, G.S., Dixon, J.E. Annu. Rev. Biochem. (2001) [Pubmed]
  13. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Chan, T.O., Rittenhouse, S.E., Tsichlis, P.N. Annu. Rev. Biochem. (1999) [Pubmed]
  14. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. Miyake, K., Ogawa, W., Matsumoto, M., Nakamura, T., Sakaue, H., Kasuga, M. J. Clin. Invest. (2002) [Pubmed]
  15. Inositol 1,4,5-triphosphate-induced granule secretion in platelets. Evidence that the activation of phospholipase C mediated by platelet thromboxane receptors involves a guanine nucleotide binding protein-dependent mechanism distinct from that of thrombin. Brass, L.F., Shaller, C.C., Belmonte, E.J. J. Clin. Invest. (1987) [Pubmed]
  16. Kinetic analysis of receptor-activated phosphoinositide turnover. Xu, C., Watras, J., Loew, L.M. J. Cell Biol. (2003) [Pubmed]
  17. PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. Pendaries, C., Tronchère, H., Arbibe, L., Mounier, J., Gozani, O., Cantley, L., Fry, M.J., Gaits-Iacovoni, F., Sansonetti, P.J., Payrastre, B. EMBO J. (2006) [Pubmed]
  18. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Wenk, M.R., Lucast, L., Di Paolo, G., Romanelli, A.J., Suchy, S.F., Nussbaum, R.L., Cline, G.W., Shulman, G.I., McMurray, W., De Camilli, P. Nat. Biotechnol. (2003) [Pubmed]
  19. Receptors and phosphoinositide-generated second messengers. Hokin, L.E. Annu. Rev. Biochem. (1985) [Pubmed]
  20. Calcium at fertilization and in early development. Whitaker, M. Physiol. Rev. (2006) [Pubmed]
  21. Signal transduction and membrane traffic: the PITP/phosphoinositide connection. Liscovitch, M., Cantley, L.C. Cell (1995) [Pubmed]
  22. Phosphoinositides in mitogenesis: neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Carney, D.H., Scott, D.L., Gordon, E.A., LaBelle, E.F. Cell (1985) [Pubmed]
  23. Ectopic expression of thyrotropin releasing hormone (TRH) receptors in liver modulates organ function to regulate blood glucose by TRH. Wolff, G., Mastrangeli, A., Heinflink, M., Falck-Pedersen, E., Gershengorn, M.C., Crystal, R.G. Nat. Genet. (1996) [Pubmed]
  24. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Rodriguez-Viciana, P., Warne, P.H., Khwaja, A., Marte, B.M., Pappin, D., Das, P., Waterfield, M.D., Ridley, A., Downward, J. Cell (1997) [Pubmed]
  25. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Hartwig, J.H., Bokoch, G.M., Carpenter, C.L., Janmey, P.A., Taylor, L.A., Toker, A., Stossel, T.P. Cell (1995) [Pubmed]
  26. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cremona, O., Di Paolo, G., Wenk, M.R., Lüthi, A., Kim, W.T., Takei, K., Daniell, L., Nemoto, Y., Shears, S.B., Flavell, R.A., McCormick, D.A., De Camilli, P. Cell (1999) [Pubmed]
  27. c-myc gene expression is stimulated by agents that activate protein kinase C and does not account for the mitogenic effect of PDGF. Coughlin, S.R., Lee, W.M., Williams, P.W., Giels, G.M., Williams, L.T. Cell (1985) [Pubmed]
  28. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Rameh, L.E., Tolias, K.F., Duckworth, B.C., Cantley, L.C. Nature (1997) [Pubmed]
  29. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Fiorillo, C.D., Williams, J.T. Nature (1998) [Pubmed]
  30. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Dove, S.K., Cooke, F.T., Douglas, M.R., Sayers, L.G., Parker, P.J., Michell, R.H. Nature (1997) [Pubmed]
  31. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Terauchi, Y., Tsuji, Y., Satoh, S., Minoura, H., Murakami, K., Okuno, A., Inukai, K., Asano, T., Kaburagi, Y., Ueki, K., Nakajima, H., Hanafusa, T., Matsuzawa, Y., Sekihara, H., Yin, Y., Barrett, J.C., Oda, H., Ishikawa, T., Akanuma, Y., Komuro, I., Suzuki, M., Yamamura, K., Kodama, T., Suzuki, H., Yamamura, K., Kodama, T., Suzuki, H., Koyasu, S., Aizawa, S., Tobe, K., Fukui, Y., Yazaki, Y., Kadowaki, T. Nat. Genet. (1999) [Pubmed]
  32. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Gozani, O., Karuman, P., Jones, D.R., Ivanov, D., Cha, J., Lugovskoy, A.A., Baird, C.L., Zhu, H., Field, S.J., Lessnick, S.L., Villasenor, J., Mehrotra, B., Chen, J., Rao, V.R., Brugge, J.S., Ferguson, C.G., Payrastre, B., Myszka, D.G., Cantley, L.C., Wagner, G., Divecha, N., Prestwich, G.D., Yuan, J. Cell (2003) [Pubmed]
  33. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Le Good, J.A., Ziegler, W.H., Parekh, D.B., Alessi, D.R., Cohen, P., Parker, P.J. Science (1998) [Pubmed]
  34. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Wolkow, C.A., Kimura, K.D., Lee, M.S., Ruvkun, G. Science (2000) [Pubmed]
  35. G-protein signaling through tubby proteins. Santagata, S., Boggon, T.J., Baird, C.L., Gomez, C.A., Zhao, J., Shan, W.S., Myszka, D.G., Shapiro, L. Science (2001) [Pubmed]
  36. Recent insights in phosphatidylinositol signaling. Majerus, P.W., Ross, T.S., Cunningham, T.W., Caldwell, K.K., Jefferson, A.B., Bansal, V.S. Cell (1990) [Pubmed]
  37. Cooking with calcium: the recipes for composing global signals from elementary events. Bootman, M.D., Berridge, M.J., Lipp, P. Cell (1997) [Pubmed]
  38. Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Bennett, C.F., Balcarek, J.M., Varrichio, A., Crooke, S.T. Nature (1988) [Pubmed]
  39. Autoradiographic imaging of phosphoinositide turnover in the brain. Hwang, P.M., Bredt, D.S., Snyder, S.H. Science (1990) [Pubmed]
  40. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Huppa, J.B., Gleimer, M., Sumen, C., Davis, M.M. Nat. Immunol. (2003) [Pubmed]
 
WikiGenes - Universities