The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Vacuoles

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vacuoles

  • Biogenesis of an ER-derived vacuole did not effectively sequester Legionella antigens from presentation on MHC class II molecules (MHC II) [1].
  • Furthermore, localization of nitrotyrosine residues in the proximity was observed for SPI2 mutant strains but not wild-type Salmonella, indicating that peroxynitrite, a potent antimicrobial compound, is excluded from Salmonella-containing vacuoles by action of SPI2 [2].
  • The pore-forming toxin listeriolysin O (LLO) is a major virulence factor implicated in escape of Listeria monocytogenes from phagocytic vacuoles [3].
  • At the ultrastructural level, the stimulatory activity of IFN-gamma was correlated with HIV particle production in intracytoplasmic vacuoles along with the differentiation of U1 into macrophage-like cells [4].
  • Throughout development of pancreatitis, vacuoles accumulated acridine orange indicating an acidic interior [5].
 

Psychiatry related information on Vacuoles

  • These results demonstrate that vacuoles in chloroquine-induced myopathy-affected muscle contain cleaved A beta, and that distribution of the two major A beta species is similar to what is observed in A beta deposition in Alzheimer's disease (AD)-affected brain [6].
 

High impact information on Vacuoles

 

Chemical compound and disease context of Vacuoles

 

Biological context of Vacuoles

 

Anatomical context of Vacuoles

  • Light microscopy showed multiple vacuoles filled with acid-phosphatase-positive material; on ultrastructural examination there was abnormal accumulation of glycogen in membrane-bound sacs (secondary lysosomes), some of which also contained dark membranous of homogeneous material [21].
  • Two yeast mutants defective in the accumulation of an endocytotic marker, lucifer yellow CH, in the vacuole have been isolated. end1 accumulates invaginations of the plasma membrane, and end2, an internal membrane-bound organelle [22].
  • The homotypic fusion of yeast vacuoles includes a 'docking' step, which we show here to consist of two sequential reactions: a reversible 'tethering' mediated by the GTPase Ypt7, and 'SNARE pairing', in which SNARE proteins from opposite membranes form a complex in trans [23].
  • This process involves the regulated transfer of FBPase directly from the cytosol into the vacuole or a vacuole-related organelle [24].
  • We further demonstrate that the requirement for CD81 is linked to sporozoite entry into hepatocytes by formation of a parasitophorous vacuole, which is essential for parasite differentiation into exoerythrocytic forms [25].
 

Associations of Vacuoles with chemical compounds

  • We have devised a genetic selection for mutant yeast cells that fail to properly deliver the vacuolar glycoprotein CPY to the lysosome-like vacuole [26].
  • When endogenous adenosine is removed from slugs, prespore vacuoles are synthesized throughout the prestalk region [27].
  • Glucose may regulate the production of an FBPase receptor or import factor that is transported to the vacuole through the secretory pathway [24].
  • A glutathione pump in the vacuolar membrane of barley actively sequesters herbicide-glutathione S-conjugates; glutathionation allows recognition and entry of the conjugates into vacuoles [28].
  • Analysis by patch-clamping demonstrated that the cADPR-gated pathway in beet is voltage-dependent over the physiological range, does not spontaneously desensitize, and is colocalized with an inositol 1,4,5-trisphosphate (InsP3)-gated calcium release pathway in individual vacuoles [29].
 

Gene context of Vacuoles

  • Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm [30].
  • Vam3 pairs with the SNAP-25 homolog Vam7 and VAMP homolog Vti1 to form SNARE complexes during vesicle docking/fusion with the vacuole [31].
  • Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole [32].
  • Yeast vacuole priming releases Vam7p, a soluble SNARE [33].
  • A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion [33].
 

Analytical, diagnostic and therapeutic context of Vacuoles

References

  1. Legionella reveal dendritic cell functions that facilitate selection of antigens for MHC class II presentation. Neild, A.L., Roy, C.R. Immunity (2003) [Pubmed]
  2. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. Chakravortty, D., Hansen-Wester, I., Hensel, M. J. Exp. Med. (2002) [Pubmed]
  3. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. Beauregard, K.E., Lee, K.D., Collier, R.J., Swanson, J.A. J. Exp. Med. (1997) [Pubmed]
  4. Interferon gamma induces the expression of human immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated U1 cells. Biswas, P., Poli, G., Kinter, A.L., Justement, J.S., Stanley, S.K., Maury, W.J., Bressler, P., Orenstein, J.M., Fauci, A.S. J. Exp. Med. (1992) [Pubmed]
  5. Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment. Niederau, C., Grendell, J.H. J. Clin. Invest. (1988) [Pubmed]
  6. Amyloid beta protein in rat soleus muscle in chloroquine-induced myopathy using end-specific antibodies for A beta 40 and A beta 42: immunohistochemical evidence for amyloid beta protein. Tsuzuki, K., Fukatsu, R., Takamaru, Y., Yoshida, T., Hayashi, Y., Yamaguchi, H., Fujii, N., Takahata, N. Neurosci. Lett. (1995) [Pubmed]
  7. Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Pearce, D.A., Ferea, T., Nosel, S.A., Das, B., Sherman, F. Nat. Genet. (1999) [Pubmed]
  8. LMA1 binds to vacuoles at Sec18p (NSF), transfers upon ATP hydrolysis to a t-SNARE (Vam3p) complex, and is released during fusion. Xu, Z., Sato, K., Wickner, W. Cell (1998) [Pubmed]
  9. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Odorizzi, G., Babst, M., Emr, S.D. Cell (1998) [Pubmed]
  10. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Su, X., Kirkman, L.A., Fujioka, H., Wellems, T.E. Cell (1997) [Pubmed]
  11. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Carabeo, R.A., Mead, D.J., Hackstadt, T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  12. Prevention of basement membrane thickening in retinal capillaries by a novel inhibitor of aldose reductase, tolrestat. Robison, W.G., Kador, P.F., Akagi, Y., Kinoshita, J.H., Gonzalez, R., Dvornik, D. Diabetes (1986) [Pubmed]
  13. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. Scarlatti, F., Bauvy, C., Ventruti, A., Sala, G., Cluzeaud, F., Vandewalle, A., Ghidoni, R., Codogno, P. J. Biol. Chem. (2004) [Pubmed]
  14. Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. Noguchi, S., Keira, Y., Murayama, K., Ogawa, M., Fujita, M., Kawahara, G., Oya, Y., Imazawa, M., Goto, Y., Hayashi, Y.K., Nonaka, I., Nishino, I. J. Biol. Chem. (2004) [Pubmed]
  15. Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. Nemoto, T., Kojima, T., Oshima, A., Bito, H., Kasai, H. J. Biol. Chem. (2004) [Pubmed]
  16. Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p). Wichmann, H., Hengst, L., Gallwitz, D. Cell (1992) [Pubmed]
  17. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Abo, A., Pick, E., Hall, A., Totty, N., Teahan, C.G., Segal, A.W. Nature (1991) [Pubmed]
  18. Mechanisms of polarized growth and organelle segregation in yeast. Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y., Bretscher, A. Annu. Rev. Cell Dev. Biol. (2004) [Pubmed]
  19. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. Sturgill-Koszycki, S., Swanson, M.S. J. Exp. Med. (2000) [Pubmed]
  20. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. García-Añoveros, J., García, J.A., Liu, J.D., Corey, D.P. Neuron (1998) [Pubmed]
  21. Adult-onset acid maltase deficiency. Morphologic and biochemical abnormalities reproduced in in cultured muscle. Askanas, V., Engel, W.K., DiMauro, S., Brooks, B.R., Mehler, M. N. Engl. J. Med. (1976) [Pubmed]
  22. Two yeast mutants defective in endocytosis are defective in pheromone response. Chvatchko, Y., Howald, I., Riezman, H. Cell (1986) [Pubmed]
  23. Defining the functions of trans-SNARE pairs. Ungermann, C., Sato, K., Wickner, W. Nature (1998) [Pubmed]
  24. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Chiang, H.L., Schekman, R. Nature (1991) [Pubmed]
  25. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Silvie, O., Rubinstein, E., Franetich, J.F., Prenant, M., Belnoue, E., Rénia, L., Hannoun, L., Eling, W., Levy, S., Boucheix, C., Mazier, D. Nat. Med. (2003) [Pubmed]
  26. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Rothman, J.H., Stevens, T.H. Cell (1986) [Pubmed]
  27. Interactions between adenosine and oscillatory cAMP signaling regulate size and pattern in Dictyostelium. Schaap, P., Wang, M. Cell (1986) [Pubmed]
  28. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Marrs, K.A., Alfenito, M.R., Lloyd, A.M., Walbot, V. Nature (1995) [Pubmed]
  29. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Allen, G.J., Muir, S.R., Sanders, D. Science (1995) [Pubmed]
  30. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Vincent, O., Townley, R., Kuchin, S., Carlson, M. Genes Dev. (2001) [Pubmed]
  31. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Sato, T.K., Rehling, P., Peterson, M.R., Emr, S.D. Mol. Cell (2000) [Pubmed]
  32. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. Chuang, J.S., Schekman, R.W. J. Cell Biol. (1996) [Pubmed]
  33. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. Thorngren, N., Collins, K.M., Fratti, R.A., Wickner, W., Merz, A.J. EMBO J. (2004) [Pubmed]
  34. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Vazquez-Torres, A., Xu, Y., Jones-Carson, J., Holden, D.W., Lucia, S.M., Dinauer, M.C., Mastroeni, P., Fang, F.C. Science (2000) [Pubmed]
  35. Persistence of vacuolated RBCs after splenectomy in adults. Neilan, B.A., Perry, J.F. JAMA (1980) [Pubmed]
  36. Separation of cells containing R-type virus-like particles from a simian virus 40-induced hamster tumor cell line. Bergman, D.G., Blakeslee, J.R., Wolff, D.A. J. Natl. Cancer Inst. (1977) [Pubmed]
  37. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori-produced cytotoxin VacA. Suzuki, J., Ohnsihi, H., Shibata, H., Wada, A., Hirayama, T., Iiri, T., Ueda, N., Kanamaru, C., Tsuchida, T., Mashima, H., Yasuda, H., Fujita, T. J. Clin. Invest. (2001) [Pubmed]
  38. Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum. Zhu, Q., Clarke, M. J. Cell Biol. (1992) [Pubmed]
 
WikiGenes - Universities