The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion.

PURPOSE: The current study examined the effects of hepatocyte growth factor/scatter factor ( HGF/SF) on cell-cell dissociation, invasion, and its association with the mediated release of matrix metalloproteinase-7 (Matrilysin) on the extracellular cleavage of E-cadherin in prostate cancer cells. EXPERIMENTAL DESIGN: The effects of HGF/SF on cell-cell dissociation, in vitro invasion, and on the expression of E-cadherin at both protein and mRNA levels were assessed in cells whose expression of Matrilysin was altered by treatment with antisense oligonucleotide. RESULTS: Incubation with HGF/SF mediated the release of active Matrilysin (M(r) 19,000), resulting in extracellular cleavage of E-cadherin from prostate cancer cells. This resultant soluble M(r) 80,000 fragment of E-cadherin was subsequently recognized upon immunoprobing with an anti-E-cadherin antibody. Both recombinant human Matrilysin (rh-Matrilysin) and/or HGF/SF increased the level of soluble E-cadherin and decreased the level of full-length (M(r) 120,000) E-cadherin as detected by Western blotting. The effects of rh-Matrilysin and HGF/SF were inhibited by an antisense oligonucleotide specifically directed toward human Matrilysin. In addition, stimulation with either rh-Matrilysin or HGF/SF resulted in disruption to the E-cadherin/beta-catenin complex, as shown by a significant increase (P < 0.05) in both cell scattering and invasion index. CONCLUSIONS: Treatment with HGF/SF induced Matrilysin- mediated cleavage to the extracellular domain of E-cadherin, resulting in its dissociation from the cadherin/catenin complex. This provides a new mechanism in HGF/SF-induced cell scattering, resulting in a switch to a more invasive phenotype in LNCapFGC cells, as demonstrated by in vitro invasion.[1]

References

 
WikiGenes - Universities