The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular genetics of mucopolysaccharidosis type IIIA and IIIB: Diagnostic, clinical, and biological implications.

Mucopolysaccharidosis (MPS) types IIIA, B, C, and D are a group of autosomal recessive lysosomal storage diseases caused by mutations in one of four genes which encode enzyme activities required for the lysosomal degradation of heparan sulfate. The progressive lysosomal storage of heparan sulfate eventually results in the clinical onset of disease, which is predominantly characterized by severe central nervous system degeneration. MPS-IIIA and MPS-IIIB involve deficiencies of heparan sulfate sulfamidase (SGSH) and alpha-N-acetylglucosaminidase (NAGLU), respectively. Both the SGSH and NAGLU genes have been cloned and characterized, thereby permitting mutation analysis of MPS-IIIA and MPS-IIIB patients. A total of 62 mutations have now been defined for MPS-IIIA consisting of 46 missense/nonsense mutations, 15 small insertions/deletions, and one splice site mutation. A total of 86 mutations have been identified in the NAGLU gene of MPS-IIIB patients; 58 missense/nonsense mutations, 27 insertions/deletions, and one splice site mutation. Most of the identified mutations in the SGSH and NAGLU genes are associated with severe clinical phenotypes. Many of the missense, nonsense, and insertion/deletion mutations have been expressed in mammalian cell lines to permit the characterization of their effects on SGSH and NAGLU activity and intracellular processing and trafficking. For MPS-IIIA and MPS-IIIB many of the reported mutations are unique making screening the general population difficult. However, molecular characterization of MPS-IIIA patients has revealed a high incidence of particular mutations of different geographical origins, which will be beneficial for the molecular diagnosis of MPS-IIIA.[1]

References

 
WikiGenes - Universities