The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide mu.

Cationic peptides containing Lys and Arg residues interact with DNA via charge-charge interactions and are known to play an important role in DNA charge neutralization and condensation processes. In this paper, we describe investigations of the interaction of the cationic adenovirus core complex peptide mu with a dodecameric ODN (12 bp) and pDNA (7528 bp) using a combination of fluorescence spectroscopy, circular dichroism spectroscopy, isothermal titration calorimetry, and photon correlation spectroscopy. Comparisons are made with protamine, a cationic peptide well-known for DNA charge neutralization and condensation. Equilibrium dissociation constants are derived independently by both CD and ITC methods for the interaction between protamine or mu with pDNA (K(d) = 0.6-1 microM). Thermodynamic data are also obtained by ITC, indicating strong charge-charge interactions. The interaction of protamine with pDNA takes place with decreasing entropy (-28.7 cal mol(-1) K(-1)); unusually, the interaction of mu with pDNA takes place with increasing entropy ( Delta S degrees (bind) = 11.3 cal mol(-1) K(-1)). Although protamine and mu appear to destabilize pDNA double helix character to similar extents, according to CD thermal titration analyses, PCS studies show that interactions between mu and pDNA result in the formation of significantly more size-stable condensed particles than protamine. The enhanced flexibility and size stability of mu-DNA (MD) particles (80-110 nm) compared to protamine counterparts suggest that MD particles are ideal for use as a part of new nonviral gene delivery vectors.[1]

References

  1. Biophysical characterization of the DNA binding and condensing properties of adenoviral core peptide mu. Keller, M., Tagawa, T., Preuss, M., Miller, A.D. Biochemistry (2002) [Pubmed]
 
WikiGenes - Universities