The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Phosphonate O-deethylation of [4-(4-bromo-2-cyano-phenylcarbamoyl) benzyl]-phosphonic acid diethyl ester, a lipoprotein lipase-promoting agent, catalyzed by cytochrome P450 2C8 and 3A4 in human liver microsomes.

NO-1886 ([4-(4-bromo-2-cyano-phenylcarbamoyl) benzyl]-phosphonic acid diethyl ester) increases lipoprotein lipase activity, resulting in a reduction in plasma triglycerides and an increase in high-density lipoprotein cholesterol. The metabolism of NO-1886 in human liver was investigated in the present study. Ester cleavage of NO-1886 from diethyl phosphonate to monoethyl phosphonate was the major metabolic pathway catalyzed by cytochrome P450. In addition, the minor metabolic pathway in human liver was the hydrolysis of the amide bond of NO-1886 by a specific cytosolic esterase. Eadie-Hofstee plots of phosphonate O-deethylation of NO-1886 in human liver microsomes showed a biphasic curve, indicating low- and high-K(m) components. Inhibition experiments with chemical inhibitors and antibodies against various cytochrome P450 isoforms suggested the involvement of CYP2C8 and CYP3A in the phosphonate O-deethylation. Recombinant CYP3A4 and CYP2C8 expressed in baculovirus-infected insect cells and human lymphoblastoid cells exhibited a high activity for phosphonate O-deethylation of NO-1886. The recombinant cytochrome P450 enzymes indicated that CYP2C8 and CYP3A4 were responsible for the low- and high-K(m) components in human liver microsomes, respectively. The selectivity of CYP2C8 in catalyzing phosphonate O-deethylation indicates that coadministration of drugs that are metabolized by the same enzyme requires careful consideration.[1]

References

 
WikiGenes - Universities