BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria.
Stimulation of apoptosis by p53 is accompanied by induction of the BH-3-only proapoptotic member of the BCL-2 family, BIK, and ectopic expression of BIK in p53-null cells caused the release of cytochrome c from mitochondria and activation of caspases, dependent on a functional BH-3 domain. A significant fraction of BIK, which contains a predicted transmembrane segment at its COOH terminus, was found inserted in the endoplasmic reticulum (ER) membrane, with the bulk of the protein facing the cytosol. Restriction of BIK to this membrane by replacing its transmembrane segment with the ER-selective membrane anchor of cytochrome b(5) also retained the cytochrome c release and cell death- inducing activity of BIK. Whereas induction of cell death by BIK was strongly inhibited by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, the inhibitor was without effect on the ability of BIK to stimulate egress of cytochrome c from mitochondria. This benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone-insensitive pathway for stimulating cytochrome c release from mitochondria by ER BIK was successfully reconstituted in vitro and identified the requirement for components present in the light membrane (ER) and cytosol as necessary for this activity. Collectively, the results identify BIK as an initiator of cytochrome c release from mitochondria operating from a location at the ER.[1]References
- BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. Germain, M., Mathai, J.P., Shore, G.C. J. Biol. Chem. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg