The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation.

Human Werner Syndrome is characterized by early onset of aging, elevated chromosomal instability, and a high incidence of cancer. Werner protein (WRN) is a member of the recQ gene family, but unlike other members of the recQ family, it contains a unique 3'-->5' exonuclease activity. We have reported previously that human Ku heterodimer interacts physically with WRN and functionally stimulates WRN exonuclease activity. Because Ku and DNA-PKcs, the catalytic subunit of DNA-dependent protein kinase (DNA-PK), form a complex at DNA ends, we have now explored the possibility of functional modulation of WRN exonuclease activity by DNA-PK. We find that although DNA-PKcs alone does not affect the WRN exonuclease activity, the additional presence of Ku mediates a marked inhibition of it. The inhibition of WRN exonuclease by DNA-PKcs requires the kinase activity of DNA-PKcs. WRN is a target for DNA-PKcs phosphorylation, and this phosphorylation requires the presence of Ku. We also find that treatment of recombinant WRN with a Ser/Thr phosphatase enhances WRN exonuclease and helicase activities and that WRN catalytic activity can be inhibited by rephosphorylation of WRN with DNA-PK. Thus, the level of phosphorylation of WRN appears to regulate its catalytic activities. WRN forms a complex, both in vitro and in vivo, with DNA-PKC. WRN is phosphorylated in vivo after treatment of cells with DNA-damaging agents in a pathway that requires DNA-PKcs. Thus, WRN protein is a target for DNA-PK phosphorylation in vitro and in vivo, and this phosphorylation may be a way of regulating its different catalytic activities, possibly in the repair of DNA dsb.[1]


  1. Werner protein is a target of DNA-dependent protein kinase in vivo and in vitro, and its catalytic activities are regulated by phosphorylation. Karmakar, P., Piotrowski, J., Brosh, R.M., Sommers, J.A., Miller, S.P., Cheng, W.H., Snowden, C.M., Ramsden, D.A., Bohr, V.A. J. Biol. Chem. (2002) [Pubmed]
WikiGenes - Universities