A screen for dominant mutations applied to components in the Drosophila EGF-R pathway.
The Drosophila epidermal growth factor receptor (EGF-R) controls many critical cell fate choices throughout development. Several proteins collaborate to promote localized EGF-R activation, such as Star and Rhomboid ( Rho), which act sequentially to ensure the maturation and processing of inactive membrane-bound EGF ligands. To gain insights into the mechanisms underlying Rho and Star function, we developed a mutagenesis scheme to isolate novel overexpression activity (NOVA) alleles. In the case of rho, we isolated a dominant neomorphic allele, which interferes with Notch signaling, as well as a dominant-negative allele, which produces RNA interference-like flip-back transcripts that reduce endogenous rho expression. We also obtained dominant-negative and neomorphic Star mutations, which have phenotypes similar to those of rho NOVA alleles, as well as dominant-negative Egf-r alleles. The isolation of dominant alleles in several different genes suggests that NOVA mutagenesis should be widely applicable and emerge as an effective tool for generating dominant mutations in genes of unknown function.[1]References
- A screen for dominant mutations applied to components in the Drosophila EGF-R pathway. Guichard, A., Srinivasan, S., Zimm, G., Bier, E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg