The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Myocardial proteome analysis reveals reduced NOS inhibition and enhanced glycolytic capacity in areas of low local blood flow.

In the heart, in situ local myocardial blood flow (MBF) varies greater than 10-fold between individual areas and displays a spatially heterogeneous pattern. To analyze its molecular basis, we analyzed protein expression of low and high flow samples (300 mg, <50% or >150% of mean MBF, each n=30) of six beagle dogs by 2-D polyacrylamide gel electrophoresis (380 +/- 78 spots/gel). In low flow samples, dimethylarginine dimethylaminohydrolase (DDAH1) was increased greatly (+377%, compared with high flow samples). This increase resulted in a 75% reduction of asymmetric dimethylarginine (ADMA), the potent endogenous inhibitor of NO synthase, whereas eNOS showed no difference. Low flow samples exhibited enhanced expression of GAPDH (+89%) and phosphoglycerate kinase (+100%), whereas hydroxyacyl-CoA dehydrogenase, electron transfer flavoprotein, myoglobin, and desmin were decreased. Assessing local MBF on different days within 2 weeks revealed a high degree of MBF stability (r2 > 0.79). Thus, stable differences in local MBF are associated with significant differences in local gene and protein expression. In low flow areas, the increased DDAH1 reduces ADMA concentration and NOS inhibition, which strongly suggests enhanced NO formation. Low flow areas are also characterized by a higher glycolytic and a lower fatty acid oxidation capacity. Both the shift in substrate utilization and the rise in NO may contribute to the known lower oxygen consumption in these areas.[1]

References

  1. Myocardial proteome analysis reveals reduced NOS inhibition and enhanced glycolytic capacity in areas of low local blood flow. Laussmann, T., Janosi, R.A., Fingas, C.D., Schlieper, G.R., Schlack, W., Schrader, J., Decking, U.K. FASEB J. (2002) [Pubmed]
 
WikiGenes - Universities