The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Chemically induced supramolecular reorganization of triblock copolymer assemblies: trapping of intermediate states via a shell-crosslinking methodology.

The mechanism of morphological phase transitions was studied for rod-shaped supramolecular assemblies comprised of a poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA(90)-b-PMA(80)-b-PS(100)) triblock copolymer in 33% tetrahydrofuran/water after perturbation by reaction with a positively charged water-soluble carbodiimide. Tetrahydrofuran solvation of the hydrophobic core domain provided the dynamic nature required for the rod-to-sphere phase transition to be complete within 30 min. The intermediate morphologies such as fragmenting rods and pearl-necklace structures were trapped kinetically by the subsequent addition of a diamino crosslinking agent, which underwent covalent crosslinking of the shell layer. Alternatively, shell-crosslinked rod-shaped nanostructures with preserved morphology were obtained by the addition of the crosslinking agent before the addition of the carbodiimide, which allowed for the shell crosslinking to be performed at a faster rate than the morphological reorganization. The formation of robust shell-crosslinked nanostructures provides a methodology by which the morphological evolution processes can be observed, and it allows access to otherwise thermodynamically unstable nanostructures.[1]

References

  1. Chemically induced supramolecular reorganization of triblock copolymer assemblies: trapping of intermediate states via a shell-crosslinking methodology. Ma, Q., Remsen, E.E., Clark, C.G., Kowalewski, T., Wooley, K.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
 
WikiGenes - Universities