The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme.

Human glutamate dehydrogenase ( GDH) exists in two isoforms encoded by the GLUD1 and GLUD2 genes, respectively. Although the two enzymes share in their mature form all but 15 of their 505 amino acids, they differ markedly in their allosteric regulation. To identify the structural basis for these allosteric characteristics, we performed site-directed mutagenesis on the human GLUD1 gene at sites that differ from the GLUD2 gene using a cloned GLUD1 cDNA. Results showed that substitution of Ala for Gly-456, but not substitution of His for Arg-470 or Ser for Asn-498, renders the enzyme markedly resistant to GTP inhibition (IC(50) = 2.80 microm) as compared with the wild type GLUD1-derived GDH (IC(50) = 0.19 microm). The G456A mutation abolished the cooperative behavior of the enzyme, as revealed by the GTP inhibitory curves. The catalytic and kinetic properties of the G456A mutant and its activation by ADP were comparable with those of the wild type GDH. Gly-456 lies in a very tightly packed region of the GDH molecule, and its replacement by Ala may lead to steric clashes with neighboring amino acids. These, in turn, may affect the conformational state of the protein that is essential for the allosteric regulation of the enzyme by GTP.[1]

References

 
WikiGenes - Universities