The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Asymmetric total synthesis of (-)-laulimalide: exploiting the asymmetric glycolate alkylation reaction.

A concise total synthesis of the potent antitumor macrolide (-)-laulimalide is described. The observation that homoallylic (or latent homoallylic) C-O bonds are present at C5, C9, C15, C19, and C23 led to the strategic decision to rely heavily on the asymmetric glycolate alkylation to construct both the C1-C14 fragment 3 and the C15-C27 subunit 4. A diastereoselective addition of a C1-C14 allylstannane to a C15-C27 alpha,beta-epoxyaldehyde served to join the two advanced fragments. A Mitsunobu macrolactonization of hydroxy acid 2 avoided isomerization of the sensitive 2,3-Z-enoate, which has been observed in base-catalyzed macrolactonizations. Removal of two TBS protecting groups to reveal the C15 and C20 hydroxyls occurred without rearrangement to isolaulimalide.[1]

References

  1. Asymmetric total synthesis of (-)-laulimalide: exploiting the asymmetric glycolate alkylation reaction. Crimmins, M.T., Stanton, M.G., Allwein, S.P. J. Am. Chem. Soc. (2002) [Pubmed]
 
WikiGenes - Universities