The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition.

Most DNA glycosylases including N-methylpurine-DNA glycosylase (MPG), which initiate DNA base excision repair, have a wide substrate range of damaged or altered bases in duplex DNA. In contrast, uracil-DNA glycosylase ( UDG) is specific for uracil and excises it from both single-stranded and duplex DNAs. Here we show by DNA footprinting analysis that MPG, but not UDG, bound to base-pair mismatches especially to less stable pyrimidine-pyrimidine pairs, without catalyzing detectable base cleavage. Thermal denaturation studies of these normal and damaged (e.g. 1,N(6)-ethenoadenine, varepsilonA) base mispairs indicate that duplex instability rather than exact fit of the flipped out damaged base in the catalytic pocket is a major determinant in the initial recognition of damage by MPG. Finally, based on our determination of binding affinity and catalytic efficiency we conclude that the initial recognition of substrate base lesions by MPG is dependent on the ease of flipping of the base from unstable pairs to a flexible catalytic pocket.[1]

References

 
WikiGenes - Universities