The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of 5-HT(1A) receptors in control of lower urinary tract function in cats.

In the present study, the role of 5-HT(1A) receptors in control of lower urinary tract function in cats was examined using 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) as agonists and WAY100635 and LY206130 as antagonists. Bladder function was assessed using cystometric infusion of saline or 0.5% acetic acid to produce bladder irritation. External urethral sphincter (EUS) function was assessed using electromyographic (EMG) recordings of activity recorded during cystometry or by recording electrically evoked pudendal reflexes. Both 5-HT(1A) receptor agonists caused dose-dependent decreases in bladder activity and increases in EUS EMG activity under conditions of acetic acid infusion. 5-HT(1A) receptor antagonists reversed both the bladder-inhibitory and sphincter-facilitatory effects. Thus, 5-HT(1A) receptor activation can have opposite effects on nociceptive afferent processing depending upon the efferent response being measured. During saline infusion of the bladder, 8-OH-DPAT produced moderate inhibition of bladder activity and had no significant effect on sphincter electromyographic (EMG) activity. 8-OH-DPAT either had no effect, or inhibited, low-threshold electrically evoked pudendal reflexes. These findings indicate that 5-HT(1A) receptor stimulation is inhibitory to bladder function in cats, especially under conditions where the bladder is hyperactive due to irritation. Furthermore, these bladder-inhibitory effects are the exact opposite of the bladder-excitatory effects of 8-OH-DPAT reported in rats. 5-HT(1A) receptor stimulation increases EUS motoneuron activity when driven by nociceptive bladder afferent inputs but not when driven by non-nociceptive afferent inputs. In summary, 5-HT(1A) receptor agonists facilitate a nociceptor-driven spinal reflex (sphincter activity) but inhibit a nociceptor-driven supraspinal reflex (micturition). This pattern of activity would facilitate urine storage and may be important under 'fight-or-flight' conditions when serotonergic activity is high.[1]

References

  1. The role of 5-HT(1A) receptors in control of lower urinary tract function in cats. Thor, K.B., Katofiasc, M.A., Danuser, H., Springer, J., Schaus, J.M. Brain Res. (2002) [Pubmed]
 
WikiGenes - Universities