The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Zero-valent iron pretreatment for enhancing the biodegradability of Azo dyes.

Azo dyes are a group of chemicals that are largely resistant to aerobic biodegradation and persist in wastewater treatment processes. This study proposed that zero-valent iron can be used to reduce the azo bond, cleaving the dye molecule into products that are more amenable to mineralization by bacteria in biological treatment processes such as activated sludge. Batch anaerobic reduction experiments were performed using two azo dyes, orange G and orange II, to determine reaction kinetics and to identify reduction products. Iron-treated dye solutions were subjected to batch biodegradation tests and respirometric analyses to screen for enhanced biodegradability over parent dyes. Results indicate that treatment of orange G and orange II with scrap iron produces aniline and sulfanilic acid as significant products that are degraded by an acclimated culture within 24 hours. Respirometric data illustrated that iron-treated dye solutions exert a significantly higher biochemical oxygen demand than the solutions containing orange G and orange II, demonstrating that recalcitrant azo dyes can be aerobically biodegraded after iron pretreatment.[1]


  1. Zero-valent iron pretreatment for enhancing the biodegradability of Azo dyes. Perey, J.R., Chiu, P.C., Huang, C.P., Cha, D.K. Water Environ. Res. (2002) [Pubmed]
WikiGenes - Universities