Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades.
We examined relationships among cell wall feruloylation, diferulate cross-linking, p-coumarate deposition, and apoplastic peroxidase (EC 1.11.1.7) activity with changes in the elongation rate of leaf blades of slow and rapid elongating genotypes of tall fescue ( Festuca arundinacea Schreb.). Growth was not directly influenced by ferulic acid deposition but leaf elongation decelerated as 8-5-, 8- O-4-, 8-8-, and 5-5-coupled diferulic acids accumulated in cell walls. Growth rapidly slowed and stopped with the deposition of p-coumarate, which is primarily associated with lignification in grass cell walls. Accretion of ferulate, diferulates and p-coumarate continued after growth ended, into the later stages of secondary wall formation. The concentration of 8-coupled diferulates dwarfed that of the more commonly measured 5-5-coupled isomer, suggesting that the latter dimer is a poor indicator of diferulate cross-linking in cell walls. Further work is required to clearly demonstrate the role of diferulate cross-linking and p-coumaroylated lignins in the cessation of leaf growth in grasses.[1]References
- Relationship of growth cessation with the formation of diferulate cross-links and p-coumaroylated lignins in tall fescue leaf blades. MacAdam, J.W., Grabber, J.H. Planta (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg