The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional CLOCK is not involved in the entrainment of peripheral clocks to the restricted feeding: entrainable expression of mPer2 and BMAL1 mRNAs in the heart of Clock mutant mice on Jcl:ICR background.

The mammalian circadian timing system consists of a central pacemaker in brain hypothalamus and damping oscillators in most peripheral tissues. To investigate the mechanism that controls circadian rhythms in the mammalian peripheral tissues, we examined the expression rhythm of mPer2, BMAL1, albumin D-site binding protein (DBP), and Rev-erbalpha mRNAs in the heart of homozygous Clock mutant mice on Jcl:ICR background under the temporal feeding restriction. Unexpectedly, the restricted feeding (RF) shifted the circadian phase of both mPer2 and BMAL1 mRNA expressions in the heart not only of wild-type mice but also of Clock mutant mice. Furthermore, in the Clock mutant mice, the amplitude of the circadian expression of mPer2 and BMAL1 mRNAs was dramatically increased by the RF. These data indicate that functional CLOCK is not required for an entrainment of peripheral clocks to RF. On the other hand, the expression levels of DBP and Rev-erbalpha mRNAs were blunted in Clock mutant mice not only under ad libitum but also under RF conditions. Thus, it seems that the rhythmic expression of Rev-erbalpha is not involved in the RF-induced circadian expression of BMAL1 mRNA, although REV-ERBalpha has been identified as a major regulator of BMAL1 transcription. Thus, the entraining mechanism of peripheral tissues to the RF seems to be different from that to the central clock in the suprachiasmatic nucleus.[1]

References

 
WikiGenes - Universities