Evolution of a perfect simple sequence repeat locus in the context of its flanking sequence.
Microsatellites, which have rapidly become the preferred markers in population genetics, reliably assign individual chinook salmon to the winter, fall, late-fall, or spring chinook runs in the Sacramento River in California's Central Valley (Banks et al. 2000. Can. J. Fish. Aquat. Sci. 57:915-927). A substantial proportion of this discriminatory power comes from Ots-2, a simple CA repeat, which is expected to evolve rapidly under the stepwise mutation model. We have sequenced a 300-bp region around this locus and typed 668 microsatellite-flanking sequence haplotypes to explore further the basis of this microsatellite divergence. Three sites of nucleotide polymorphism in the Ots-2 flanking sequence define five haplotypes that are shared by the Californian and Canadian populations. The Ots-2 microsatellite alleles are nonrandomly distributed among these five haplotypes in a pattern of gametic disequilibrium that is also shared among populations. Divergence between the winter run and other Central Valley stocks appears to be caused by a combination of surprisingly static evolution at Ots-2 within a context of more rapidly changing haplotype frequencies.[1]References
- Evolution of a perfect simple sequence repeat locus in the context of its flanking sequence. Blankenship, S.M., May, B., Hedgecock, D. Mol. Biol. Evol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg