The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Determination of bromate in drinking water by zone electrophoresis-isotachophoresis on a column-coupling chip with conductivity detection.

The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.[1]

References

  1. Determination of bromate in drinking water by zone electrophoresis-isotachophoresis on a column-coupling chip with conductivity detection. Bodor, R., Kaniansky, D., Masár, M., Silleová, K., Stanislawski, B. Electrophoresis (2002) [Pubmed]
 
WikiGenes - Universities