The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional analysis of an Arabidopsis T-DNA "knockout" of the high-affinity NH4(+) transporter AtAMT1;1.

NH(4)(+) acquisition by plant roots is thought to involve members of the NH(4)(+) transporter family (AMT) found in plants, yeast, bacteria, and mammals. In Arabidopsis, there are six AMT genes of which AtAMT1;1 demonstrates the highest affinity for NH(4)(+). Ammonium influx into roots and AtAMT1;1 mRNA expression levels are highly correlated diurnally and when plant nitrogen ( N) status is varied. To further investigate the involvement of AtAMT1;1 in high-affinity NH(4)(+) influx, we identified a homozygous T-DNA mutant with disrupted AtAMT1;1 activity. Contrary to expectation, high-affinity (13)NH(4)(+) influx in the amt1;1:T-DNA mutant was similar to the wild type when grown with adequate N. Removal of N to increase AtAMT1;1 expression decreased high-affinity (13)NH(4)(+) influx in the mutant by 30% compared with wild-type plants, whereas low-affinity (13)NH(4)(+) influx (250 microM-10 mM NH(4)(+)) exceeded that of wild-type plants. In these N-deprived plants, mRNA copy numbers of root AtAMT1;3 and AtAMT2;1 mRNA were significantly more increased in the mutant than in wild-type plants. Under most growth conditions, amt1;1:T-DNA plants were indistinguishable from the wild type, however, leaf morphology was altered. However, when grown with NH(4)(+) and sucrose, the mutant grew poorly and died. Our results are the first in planta evidence that AtAMT1;1 is a root NH(4)(+) transporter and that redundancies within the AMT family may allow compensation for the loss of AtAMT1;1.[1]

References

  1. Functional analysis of an Arabidopsis T-DNA "knockout" of the high-affinity NH4(+) transporter AtAMT1;1. Kaiser, B.N., Rawat, S.R., Siddiqi, M.Y., Masle, J., Glass, A.D. Plant Physiol. (2002) [Pubmed]
 
WikiGenes - Universities